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ABSTRACT
Graphmachine learning has gained great attention in both academia
and industry recently. Most of the graph machine learning models,
such as Graph Neural Networks (GNNs), are trained over massive
graph data. However, in many real-world scenarios, such as hospi-
talization prediction in healthcare systems, the graph data is usually
stored at multiple data owners and cannot be directly accessed by
any other parties due to privacy concerns and regulation restric-
tions. Federated Graph Machine Learning (FGML) is a promising
solution to tackle this challenge by training graph machine learning
models in a federated manner. In this survey, we conduct a com-
prehensive review of the literature in FGML. Specifically, we first
provide a new taxonomy to divide the existing problems in FGML
into two settings, namely, FL with structured data and structured
FL. Then, we review the mainstream techniques in each setting
and elaborate on how they address the challenges under FGML.
In addition, we summarize the real-world applications of FGML
from different domains. Finally, we present several limitations in
the existing studies with promising research directions in this field.
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1 INTRODUCTION
In recent years, graphs have been widely used to represent complex
data in a wide diversity of real-world domains, e.g., healthcare [69],
transportation [34], and recommendation systems [10]. Numerous
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graph machine learning techniques provide insights into under-
standing rich information hidden in graphs and show expressive
performance in different tasks, such as node classification [89] and
link prediction [4].

Although these graph machine learning techniques have made
significant progress, most of them require a massive amount of
graph data centrally stored on a single machine. However, with the
emphasis on data security and user privacy [67], this requirement
is often infeasible in the real world. Instead, graph data is usually
distributed in multiple data owners (i.e., data isolation) and we are
not able to collect the graph data in different places due to privacy
concerns. For instance, a third-party company aims to train a graph
machine learning model for a group of financial institutions to help
them detect potential financial crimes and fraud customers. Each
financial institution owns its local dataset of customers, such as
their demographics, as well as transaction records among them.
The customers in each financial institution form a customer graph
where edges represent the transaction records. Due to strict pri-
vacy policies and commercial competition, local customer data in
each institution cannot be directly shared with the company or
other institutions. Meanwhile, some institutions may have connec-
tions with others, which could be viewed as structural information
among institutions. Generally, the major challenge for the com-
pany lies in training a graph machine learning model for financial
crime detection based on the local customer graphs and structural
information among institutions without directly accessing local
customer data in each institution.

Federated Learning (FL) [49] is a distributed learning scheme
which addresses the data isolation problem through collaborative
training. It enables participants (i.e., clients) to jointly train a ma-
chine learning model without sharing their private data. Therefore,
combining FL with graph machine learning becomes a promising
solution to the aforementioned problem. In this paper, we term it
Federated Graph Machine Learning (FGML). In general, FGML can
be categorized as two settings with respect to the level of struc-
tural information. The first setting is FL with structured data. In FL
with structured data, clients collaboratively train a graph machine
learning model based on their graph data while keeping the graph
data locally. The second setting is structured FL. In structured FL,
there are structural information among the clients which forms a
client-level graph. The client graph could be leveraged to design
more effective federated optimization approaches.

While FGML provides a promising paradigm, the following chal-
lenges emerge and need to be addressed.
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(1) Cross-client missing information. A common scenario in FL
with structured data is that each client owns a subgraph
of the global graph and some nodes may have neighbors
belonging to other clients. Due to privacy concerns, a node
can only aggregate the features of its neighbors within the
client but cannot access the features of those on other clients,
which leads to insufficient node embeddings [8, 87].

(2) Privacy leakage of graph structures. In traditional FL, a client
is not allowed to expose the features and labels of its data
samples. In Fl with structured data, the privacy of struc-
tural information should also be considered. The structural
information can be either directly exposed by sharing the
adjacency matrix or indirectly exposed by transmitting node
embeddings [43, 58, 71, 86].

(3) Data heterogeneity across clients. Unlike traditional FL where
data heterogeneity comes from non-IID data samples [26, 62],
graph data in FGML contains rich structural information
[28, 29, 42, 88]. Meanwhile, divergent graph structures across
clients can also affect performance of graphmachine learning
models.

(4) Parameter utilization strategies. In structured FL, the client
graph enables a client to obtain information from its neigh-
boring clients. The effective strategies of fully utilizing neigh-
bor information orchestrated by a central server or in a fully
decentralized manner should be well designed in structured
FL [24, 33, 51].

To tackle the above challenges, a great number of algorithms
have been proposed in recent years. However, to the best of our
knowledge, the existing surveys mainly focus on challenges and
approaches in standard FL [31, 36, 77, 93] yet only a few attempts
have been made to survey specific problems and techniques in
FGML [40, 85]. A position paper [85] provides a categorization of
FGML but does not summarize main techniques in FGML. Another
review paper [40] only covers a limited number of related papers
in this topic and introduces the existing techniques very briefly.

In this survey, we introduce the concepts of two problem settings
in FGML. Then we review the current techniques under each setting
and introduce real-world applications in FGML. Finally, several
promising future directions are presented. Our contributions in this
paper can be summarized as follows.

• Taxonomy of Techniques in FGML. We propose a tax-
onomy of FGML based on different problem settings and
summarize key challenges in each setting.
• Comprehensive Technique Review.We provide a com-
prehensive overview of the existing techniques in FGML.
Compared with the existing reviews, we not only investigate
a more extensive set of related work but also provide a more
elaborate analysis of techniques instead of simply listing the
steps of each method.
• Real-World Applications.We are the first to summarize
real-world applications of FGML. We categorize the applica-
tions by their domains and introduce related works in each
domain.
• Promising Future Directions. We point out the limita-
tions of the existing methods and provide promising future
directions in FGML.

The rest of this paper is organized as follows. Section 2 briefly in-
troduces definitions in graph machine learning as well as concepts
and challenges of two settings in FGML. We review mainstream
techniques in the two settings in Section 3 and Section 4, respec-
tively. Section 5 further explores applications of FGML in the real
world. We also provide possible future directions in Section 6. Fi-
nally, Section 7 concludes this paper.

2 PROBLEM FORMULATION
In this section, we first present related definitions in graph machine
learning and FL. Then we introduce the problem formulation of
two different settings in FGML.
Notations. Throughout this paper, we use bold lowercase letters
(e.g., z) and bold uppercase letters (e.g., A) to represent vectors
and matrices, respectively. For any matrix, e.g., A, we use A𝑖 to
denote its 𝑖-th row vector and A𝑖 𝑗 to denote its (𝑖, 𝑗)-th entry. The
𝑙𝑝 norm of a vector z for 𝑝 ≥ 1 is denoted as | |z| |𝑝 . We use letters in
calligraphy font (e.g.,V) to denote sets. |V| denotes the cardinality
of setV .

2.1 Graph Machine Learning
Definition 1. (Graphs) A graph is G = (V, E), whereV is the node
set and E is the edge set. 𝑣𝑖 ∈ V denotes a node and 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ E
denotes an edge between node 𝑣𝑖 and node 𝑣 𝑗 .

We use A ∈ {0, 1}𝑛×𝑛 to represent the adjacency matrix of
graph G, where 𝑛 = |V| is the total number of nodes. A𝑖 𝑗 = 1
implies that there exists an edge between node 𝑣𝑖 and node 𝑣 𝑗 ,
otherwise A𝑖 𝑗 = 0. D ∈ R𝑛×𝑛 denotes the degree diagonal matrix
where D𝑖𝑖 =

∑
𝑗 A𝑖 𝑗 . The neighborhood of node 𝑣𝑖 is defined as

𝑁 (𝑣𝑖 ) = {𝑣 𝑗 ∈ V|(𝑣𝑖 , 𝑣 𝑗 ) ∈ E}. For graph data with node features,
we use X ∈ R𝑛×𝑑 to denote the node feature matrix where 𝑑 is the
number of node features.

Graphs can be categorized as homogeneous graphs (containing
only one type of nodes and one type of edges) and heterogeneous
graphs (whose nodes belong to more than one type of nodes and/or
edges) according to the number of node types and edge types. The
two typical heterogeneous graphs we mention in this paper are
knowledge graphs (KGs) and user-item graphs.

Definition 2. (Knowledge Graphs) A knowledge graph is a di-
rected heterogeneous graph G = (V, E) where nodes are entities
and edges are subject-property-object triple facts. Each edge of the
form (head entity, relation, tail entity) (denoted as (ℎ, 𝑟, 𝑡)) indicates
a relationship 𝑟 from a head entity ℎ to a tail entity 𝑡 .

Definition 3. (User-Item Graphs) A user-item graph is a heteroge-
neous graph G = (V, E). Users and items serve as nodes and relations
between users and items serve as edges. In some scenarios, relations
also exist between users and between items.

Definition 4. (Graph Machine Learning Models) Given a graph
G = (V, E), a graph machine learning model 𝑓𝜔 parameterized by
𝜔 learns the node representations H ∈ R𝑛×𝑑𝑒 with respect to G for
downstream tasks, where 𝑑𝑒 is the dimension of node embeddings

H = 𝑓𝜔 (G). (1)
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(a) FL with structured data (b) Original FL (c) Structured FL

Figure 1: The framework comparison among original FL, FL with structured data and structured FL. (a) FL with structured
data: each client owns graph data, i.e., a (sub)graph or multiple graphs. (b) Original FL: data samples on clients are typically
Euclidean data and no links exist among edges. (c) Structured FL: clients are connected by links and form a client graph.

For node classification tasks, we employ a softmax function to
obtain the probability vector for each node based on its embedding,
and then a loss function (e.g., cross entropy) is applied to measure
the difference between predictions and the given node labels.

For graph classification tasks, a graph-level representation hG
can be pooled from node representations through a pooling function
(e.g., mean pooling) which aggregates the embeddings of all nodes
in the graph into a single embedding vector.

Without loss of generality, we mainly consider Graph Neural
Networks (GNNs) (e.g., GCN [32]) as graph machine learning mod-
els in this survey. In GNNs, each node 𝑣𝑖 typically gathers the
information from its neighbors 𝑁 (𝑣𝑖 ) and aggregates them with its
own information to update its representation h𝑖 . Mathematically,
an 𝐿-layer GNN 𝑓𝜔 can be formulated as

h𝑙𝑖 = 𝜎 (𝜔𝑙 · (h𝑙−1
𝑖 ,Agg({h𝑙−1

𝑗 |𝑣 𝑗 ∈ 𝑁 (𝑣𝑖 )}))) (2)

for 𝑙 = 1, 2, · · · , 𝐿, where h𝑙𝑖 is the representation of node 𝑣𝑖 after
the 𝑙-layer of 𝑓𝜔 and h0

𝑖 = X𝑖 is the raw feature of node 𝑣𝑖 . 𝜔𝑙

is the learnable parameters in the 𝑙-layer of 𝑓𝜔 and Agg(·) is the
aggregation operation. 𝜎 is an activation function.

2.2 Federated Learning
FGML is a type of FL which involves structural information. Before
introducing the concepts of two settings in FGML, we provide the
definition of FL in this subsection.

Definition 5. (Federated Learning) In standard FL, we consider a
set of𝑀 clients C = {𝑐𝑘 }𝑀𝑘=1. Each client 𝑐𝑘 owns its private dataset

D𝑘 = {(x𝑖 , 𝑦𝑖 )𝑁𝑘

𝑖=1} sampled from its own data distribution, where x𝑖 is
the feature vector of 𝑖-th data sample and𝑦𝑖 is the corresponding label
of the data sample. 𝑁𝑘 = |D𝑘 | is the number of data samples on client
𝑐𝑘 and 𝑁 =

∑𝑀
𝑘=1 𝑁𝑘 . Let 𝑙𝑘 denote the loss function parameterized

by 𝜔 on client 𝑐𝑘 . The goal of FL is to optimize the overall objective
function while keeping private datasets locally

min
𝜔

𝑀∑︁
𝑘=1

𝑁𝑘

𝑁
𝐿𝑘 (𝜔) = min

𝜔

1
𝑁

𝑀∑︁
𝑘=1

𝑁𝑘∑︁
𝑖=1

𝑙𝑘 (x𝑖 , 𝑦𝑖 ;𝜔), (3)

where 𝐿𝑘 is the average loss over the local data on client 𝑐𝑘 .

FedAvg [49] is a typical algorithm for federated optimization
to obtain high model utility while preserving privacy. In FedAvg,

only model parameters are transmitted between the central server
and each client. Specifically, during each round 𝑡 , the central server
selects a subset of clients and sends them a copy of the current
global model parameters 𝜔𝑡 for local training. Each selected client
𝑐𝑘 updates the received copy 𝜔𝑡

𝑘
by an optimizer such as stochastic

gradient descent (SGD) for a variable number of iterations locally
on its own dataset D𝑘 . Then the server collects updated model
parameters 𝜔𝑡

𝑘
from the selected clients and aggregates them to

obtain a new global model 𝜔𝑡+1. Finally, the server broadcasts the
updated global model 𝜔𝑡+1 to clients for training in round 𝑡 + 1.

It is worthwhile to note that GNN and FL both involve an ag-
gregation operation. Aggregation in the context of GNN represents
the operation that a node updates its representation by aggregat-
ing information from its neighbors. Aggregation in the context of
FL represents the operation that the central server collects model
parameters from clients and updates the global model parameters.
Following the previous survey [40], we use GNN aggregation and FL
aggregation in this survey to represent two aggregation operations
in GNN and FL, respectively.

2.3 Federated Graph Machine Learning
Standard FL mainly deals with tasks on Euclidean data (e.g., im-
age classification) and equally aggregates model parameters from
clients. Different from standard FL, federated graph machine learn-
ing involves structural information in federated optimization. Based
on the level of structural information, FGML can be categorized as
two mainstreams.
Setting 1. (FL with Structured Data) In FL with structured data,
clients possess private structured datasets (i.e., graphs) and jointly
train a graph machine learning model orchestrated by the central
server. Fig. 1(a) illustrates the framework of FL with structured
data. Formally, each client 𝑐𝑘 owns its private local data D𝑘 =

{G1,G2, · · · }, where each G𝑖 = (V𝑖 , E𝑖 ) is a graph with its node
set V𝑖 and edge set E𝑖 . The objective of FL with structured data
is that each client collaboratively trains a graph machine learning
model 𝑓𝜔 with other clients based on its local graph dataset D𝑘

while always keeping D𝑘 locally. Note that each client in FL with
structured data may have one single (sub)graph or multiple graphs.
In general, clients train a graph machine learning model for graph-
level tasks when each client 𝑐𝑘 owns multiple graphs and 𝑁𝑘 is
the number of graphs on client 𝑐𝑘 ; on the contrary, when each
client 𝑐𝑘 owns one single graph G𝑘 or a subgraph G𝑘 of an entire
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(a) FL with structured data

(c) Overlapping instance alignment

(b) Cross-client information reconstruction

(d) Non-IID data adaptation

Figure 2: The taxonomy of techniques in FL with structured
data. The techniques in (a) FL with structured data can be
categorized as (b) cross-client information reconstruction
which recovers missing links (e.g., dashed lines in (b)) be-
tween nodes from different clients, (c) overlapping instance
alignment which aligns overlapping instances (e.g., nodes
connected by dashed lines in (c)) among different clients, and
(d) Non-IID data adaptation which tackles the non-IID char-
acteristic of data across clients.

graph, the graph machine learning model is for node-level tasks
and 𝑁𝑘 = |V𝑘 | is the number of nodes in G𝑘 .
Setting 2. (Structured FL) In structured FL, relations exist among
clients. When we take each client as a node, all the clients in
structured FL will form a graph GC = {VC, EC} where VC
is the client set and EC contains links between clients. Fig. 1(c)
shows the framework of structured FL. Formally, given the client
graph GC = {VC, EC}, each client 𝑐𝑘 collaboratively trains a ma-
chine learning model 𝑓𝜔 by interacting with its neighbors 𝑁 (𝑐𝑘 ) =
{𝑐𝑠 | (𝑐𝑘 , 𝑐𝑠 ) ∈ EC}. It is noteworthy that the datasets on clients do
not have to be structured data.

In Section 3 and Section 4, we review the existing techniques in
FL with structured data and structured FL and analyze how they
solve the aforementioned challenges, respectively. We summarize
these techniques in https://github.com/xbfu/Techniques-in-FGML.

3 FL WITH STRUCTURED DATA
The goal of clients in FL with structured data is to jointly train a
graph machine learning model based on their local graph datasets
while preserving privacy. In this section, we review techniques in
FL with structured data for improving model utility and tackling
the aforementioned challenges. Fig. 2 illustrates the taxonomy of
techniques in FL with structured data.

3.1 Cross-Client Information Reconstruction
When a graph is split into multiple subgraphs and each client owns
a subgraph of the original graph, each node can only perform GNN

aggregation on the information from a subset of its neighbors (i.e.,
those within the subgraph) but cannot obtain information from
those located on other clients due to the privacy issue. The missing
cross-client information leads to biased node embeddings on each
client and therefore degrades the performance of graph machine
learning models. The objective in this case is to reconstruct the
important missing cross-client information for calculating node
embeddings. The existing techniques can be categorized as inter-
mediate result transmission and missing neighbor generation. The
difference lies in whether the original global graph structure is
known: the studies in intermediate result transmission assume that
the central server is aware of the original graph structure, while
those in missing neighbor generation do not.

3.1.1 Intermediate Result Transmission. When the central server
is aware of the original graph structure (including missing cross-
client links), it is able to collect intermediate results (e.g., node
representations) in graph machine learning models from clients and
compute node embeddings according to their complete neighbor
lists including cross-client neighbors.

Considering an 𝐿-layer GCN model 𝑓𝜔 , the operation in the 𝑙-th
layer of 𝑓𝜔 can be written as

H𝑙 = 𝜎

(
LH𝑙−1W𝑙

)
, (4)

where H𝑙 is the hidden representation after the 𝑙-th layer of 𝑓𝜔
and H0 = X. W𝑙 denotes the weight matrix of the 𝑙-th layer and
L = (D+ I)−

1
2 (A+ I) (D+ I)−

1
2 . In the federated setting, we rewrite

the GCN model in a distributed manner, where the hidden matrix
H𝑙
(𝑘 ) after the 𝑙-th layer of 𝑓𝜔 on client 𝑐𝑘 can be computed by

H𝑙
(𝑘 ) = 𝜎

(
𝑀∑︁
𝑠=1

L(𝑘𝑠 )H
𝑙−1
(𝑠 )W

𝑙
(𝑠 )

)
= 𝜎

(
L(𝑘𝑘 )H

𝑙−1
(𝑘 )W

𝑙
(𝑘 ) +

∑︁
𝑠≠𝑘

L(𝑘𝑠 )H
𝑙−1
(𝑠 )W

𝑙
(𝑠 )

) (5)

for 𝑙 = 1, 2, · · · , 𝐿, where H0
(𝑘 ) = X(𝑘 ) are node features on client

𝑐𝑘 . W𝑙
(𝑘 ) is the local parameters in the 𝑙-th layer of the local graph

learning model on client 𝑐𝑘 . L(𝑘𝑠 ) is a block of L corresponding to
the rows of nodes inV𝑘 and columns of nodes inV𝑠 .

An intuitive way of obtaining information from a node’s neigh-
bors located on other clients is to transmit node embeddings directly.
To avoid exposing raw node features, each client performs GNN
aggregation within its local subgraph when processing the first
GCN layer [8, 41]

H1
(𝑘 ) = 𝜎 (L(𝑘𝑘 )X(𝑘 )W1

(𝑘 ) ) . (6)

Then, each client performs GNN aggregation for a node including
the embeddings of its neighbors from other clients following Eq. (5)
after the first GCN layer.

However, the block of degree diagonal matrix D(𝑘 ) ∈ R𝑁𝑘×𝑁𝑘

containing node degree information on client 𝑐𝑘 is unknown for
other clients due to privacy concerns and must be kept locally
during computation. There have been a series of corresponding
solutions to this problem. For instance, PPSGCN [81] reformulates
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each block L(𝑘𝑠 ) by

L(𝑘𝑠 ) = (D(𝑘 ) + I)−
1
2 · L̃(𝑘𝑠 ) , (7)

where L̃(𝑘𝑠 ) = A(𝑘𝑠 ) (D(𝑘 ) + I)−
1
2 . Therefore, Eq. (5) can be rewrit-

ten as
H𝑙
(𝑘 ) = 𝜎 (L(𝑘𝑘 )H𝑙−1

(𝑘 )W
𝑙
(𝑘 )

+ (D(𝑘 ) + I)−
1
2
∑︁
𝑠≠𝑘

L̃(𝑘𝑠 )H
𝑙−1
(𝑠 )W

𝑙
(𝑠 ) )

(8)

for 𝑙 = 1, 2, · · · , 𝐿, where L̃(𝑘𝑠 )H𝑙−1
(𝑠 )W

𝑙
(𝑠 ) can be calculated locally

within client 𝑐𝑠 and transmitted to the server. Consequently, we
can learn node representations over clients without exchanging
local graph structure information.

Although the raw data (i.e., node features and structural infor-
mation) are preserved with intermediate result transmission, it
requires the structural information of the original graph to com-
pute node embeddings, whichmight be impractical in the real world.
Furthermore, intermediate results are transmitted multiple times
for each local update, which also brings extra communication costs.

3.1.2 Missing Neighbor Generation. When the original graph struc-
ture is unknown to the server, the techniques in intermediate result
transmission fail since the cross-subgraph links carrying important
information will never be captured by any client [87]. To tackle
this issue, several approaches of missing neighbor generation have
been proposed recently.

The intuition of missing neighbor generation is to design a miss-
ing neighbor generator to reconstruct the features of a node’s cross-
subgraph neighbors on other clients [56, 87]. Concretely, each client
𝑐𝑘 first hides a subset of nodes and related edges in its local sub-
graph G𝑘 following a specific strategy (e.g., Breadth-First Search)
[56] to form an impaired subgraph Ḡ𝑘 . Then each client trains X a
predictor parameterized by 𝜃𝑑 for predicting the number 𝑛̃𝑖 of the
masked neighbors of each node 𝑣𝑖 in Ḡ𝑘 and an encoder (e.g., GCN)
parameterized by 𝜃 𝑓 for predicting the features X̃(𝑖 ) of the masked
neighbors by minimizing the loss

𝐿𝑛 = 𝜆𝑑𝐿𝑑 (𝑛̃𝑖 , 𝑛𝑖 ;𝜃𝑑 ) + 𝜆𝑓 𝐿𝑓 ({X̃(𝑖 ) }𝑣𝑖 ∈ Ḡ𝑘 , {X(𝑖 ) }𝑣𝑖 ∈ Ḡ𝑘 ;𝜃 𝑓 ), (9)

where 𝐿𝑑 and 𝐿𝑓 are the loss functions for the predicted number of
masked neighbors and their predicted features, respectively. X(𝑖 )
is the features of node 𝑣𝑖 ’s masked neighbors. A cross-subgraph
feature reconstruction term [87] is introduced to 𝐿𝑓 , aiming to
recover features of cross-subgraph missing neighbors by decreasing
the distance between predicted node features and the closest node
feature on other clients.

3.2 Overlapping Instance Alignment
In applications, an instance (e.g., a node in homogeneous graphs or
an entity in KGs) could belong to two or more clients. Under this
setting, the embeddings of an overlapping instance from different
clients may come from different embedding spaces during collab-
orative training. To tackle this problem, the overlapping instance
alignment technique is proposed [7, 55, 92]. The key idea is to learn
global instance embeddings based on the local instance embeddings
from clients. This technique can be applied to homogeneous graphs,
KGs, and user-item graphs.

3.2.1 Homogeneous Graph-Based Alignment. The existing works
about instance alignment in homogeneous graphs are mainly under
vertical FL [77]. In generic vertical FL, clients have overlapping
nodes but differ in the feature space. Unlike generic vertical FL,
structural information in graph data is also taken into account in
FGML. One common scenario is that a set of nodes are located
on all clients but their features and relations are different across
clients [52, 92]. The central server can collect local node embeddings
from clients and align overlapping node embeddings. For instance,
VFGNN [92] first computes local node embeddings H(𝑘 ) on each
client 𝑐𝑘 using a graph machine learning model. Then it combines
the embeddings of each node 𝑣𝑖 via a combination strategy

H← COMBINE({H(𝑘 ) }𝑀𝑘=1), (10)

where COMBINE(·) denotes a combination operator (e.g., Concat).
Another scenario is that one client only contains structural infor-

mation of graph data and other clients only contain node features
[14]. In this scenario, graph machine learning models cannot be
simply applied on each client since structural information and node
features are located in different clients. The techniques deal with
this problem by protecting structural information and raw node fea-
tures simultaneously during federated optimization. For example,
SGNN [50] replaces the original adjacency matrix with a struc-
tural similarity matrix A𝑠 where entry A𝑠

𝑖 𝑗
measures the structural

similarity between node 𝑣𝑖 and node 𝑣 𝑗 . SGNN computes A𝑠
𝑖 𝑗
by

A𝑠
𝑖 𝑗 = exp(−dist(OD(𝑁 (𝑣𝑖 )),OD(𝑁 (𝑣 𝑗 )))), (11)

where OD(·) returns a list of ordered degree given the input node
list and dist(·, ·) is a distance function (e.g., dynamic time warping
(DTW) [53]). Then SGNN embeds original features on the clients
which only contain features using one-hot encoding and finally
computes node embeddings with the structural similarity matrix.
FedSGC [14] applies Homomorphic Encryption (HE) [1] for secure
transmission of the adjacency matrix and node features.

3.2.2 KG-Based Alignment. Suppose in a federated KG each client
owns one KG and each KG may have overlapping entities which
also exist on other clients. The key technique to improve the perfor-
mance of KG embedding is to align the embeddings of overlapping
entities across KGs [12, 55, 86]. More specifically, after each round
𝑡 , the server collects each local embedding matrix from each client
to update the global embedding matrix. Then the server distributes
the global embeddings to corresponding clients for subsequent local
training. As the first FL framework for KGs, FedE [12] enables the
server to record all the unique entities from clients with an overall
entity table. The server collects the entity embedding matrix E𝑡(𝑘 )
of each client 𝑐𝑘 and aligns them by

E𝑡 =

(
1 ⊘

𝑀∑︁
𝑘=1

v𝑘

)
⊗

𝑀∑︁
𝑘=1

P(𝑘 )E
𝑡
(𝑘 ) , (12)

whereE𝑡 is the global entity embeddingmatrix, 1 denotes an all-one
vector, ⊘ denotes element-wise division for vectors and ⊗ denotes
element-wise multiplication with broadcasting. P(𝑘 ) denotes client
𝑐𝑘 ’s permutation matrix that maps client 𝑐𝑘 ’s entity matrix to the
server’s entity table. v𝑘 denotes client 𝑐𝑘 ’s existence vectors.

As the server maintains a complete table of entity embeddings,
it can easily infer a relation embedding between two entities ℎ and
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𝑡 by calculating
𝑟 ′ = argmax

𝑟
𝑓 (ℎ, 𝑟, 𝑡), (13)

where 𝑓 (·) is a score function (e.g., TransE [2]) [86]. To tackle the
privacy issue, FedR [86] instead aligns relation embeddings.

Instead of aligning embeddings on the server, FKGE [55] en-
ables entity alignment between clients. Inspired by PATE-GAN
[30], FKGE involves a privacy-preserving adversarial translation
(PPAT) network for adversarial learning. The PPAT network em-
ploys a generator as well as a student discriminator and multiple
teacher discriminators. The generator first translates aligned enti-
ties’ embeddings from G𝑘 into synthesized embeddings and sents
them to G𝑠 . The student and teacher discriminators distinguish be-
tween the synthesized embeddings and ground truth embeddings
in G𝑠 for each pair of KGs (G𝑘 ,G𝑠 ) which have aligned entities
E𝑘 ∩ E𝑠 and relations R𝑘 ∩ R𝑠 . During the alignment, only synthe-
sized embeddings and gradients are transmitted among clients and
data privacy can be guaranteed [22].

3.2.3 User-Item Graph-Based Alignment. In a federated recommen-
dation system, each user only has a first-order local user-item sub-
graph with its own item rating and its neighbors located on its
device. A naive method is to align the embeddings of overlapping
users and items directly. However, the server can easily infer a user’s
user-item links by recording the items with non-zero-gradient em-
beddings from this user since an item embedding gets updated on
the user only when the item has the rating score from the user [43].

To tackle the privacy leakage, pseudo interacted item sampling
and Local Differential Privacy (LDP) [20] techniques are two com-
mon strategies [43, 70, 71]. Before sending gradients to the cen-
tral server, each user 𝑢𝑘 first samples some items that it has not
interacted with (i.e., pseudo interacted items). Then it generates
embedding gradients of the sampled items (e.g., using a Gaussian
distribution) and combines them with the real embedding gradients.
Finally, the user applies an LDP module to modify gradients by
clipping and adding zero-mean Laplacian noise to gradients

𝑔′𝑘 = clip(𝑔𝑘 , 𝛿) + Laplace(0, 𝜆), (14)

where 𝑔𝑘 is the unified gradients of user 𝑢𝑘 including model gradi-
ents and user/item embedding gradients, clip(𝑔𝑘 , 𝛿) limits 𝑔𝑘 with
the threshold 𝛿 and 𝜆 is the strength of Laplacian noise.

3.3 Non-IID Data Adaptation
The data distribution on each client may diverge a lot both in node
features and graph structures [73]. Such data heterogeneity may
lead to severe model divergence in the federated setting and there-
fore degrade the performance of the global model. The intuition of
mitigating the problem is either to train an effective global model
or to train specialized models for each client. The existing tech-
niques handling this problem can be categorized as single global
model-based methods and personalized model-based methods.

3.3.1 Single GlobalModel-BasedMethods. The goal of single global
model-based methods is to train a global graph machine learn-
ing model over graph data from clients. The existing techniques
tackle non-IID data across clients by designing loss functions and
reweighting FL aggregations and interpolating local models.

Loss Function Designing. The intuition of loss function design-
ing is to replace the original loss function, which is just for high
model utility, with a new well-designed loss function that is also
targeted at data heterogeneity. A common strategy is to add regular-
ization terms into the local loss function. For instance, to deal with
relational data (e.g., KGs) heterogeneity across clients, FedAlign
[39] minimizes the average Optimal Transportation (OT) distance
[66] between the basis matrices in basis decomposition [61] among
clients. Mathematically, to train an 𝐿-layer graph machine learning
model, the regularization term on client 𝑐𝑘 can be rewritten as

𝐿𝑟
𝑘
=

𝜇

𝑀

𝑀∑︁
𝑘≠𝑠

𝐿∑︁
𝑙=1

OT(V𝑙
(𝑘 ) ,V

𝑙
(𝑠 ) ) + 𝜆( | |∇𝐿𝑘 (𝜔) | |2 − 1)2, (15)

where V𝑙
(𝑘 ) is the basis of 𝑙-th layer of the local graph machine

learning model on client 𝑐𝑘 and OT(·) computes OT distance. The
second term is a weight penalty to make the objective function
quasi-Lipschitz continuous. 𝜇 and 𝜆 are hyperparameters to adjust
the contributions of each term.

In addition to regularization, another strategy in loss function
designing is instance reweighting. For instance, FILT+ [94] pulls the
local model closer to the global by minimizing the loss discrepancy
between a local model and the global model. Specifically, FILT+
reweights instances on client 𝑐𝑘 by puttingmoreweights on samples
with less confidence in the loss function

𝐿𝑢
𝑘
=

𝑁𝑘∑︁
𝑖=1
(1 − exp(−Φ(x𝑖 , 𝜔, 𝜔𝑘 )))𝛾 𝑙𝑘 (𝑦𝑖 , 𝑦𝑖 ;𝜔𝑘 ), (16)

where Φ(·) is defined as

Φ(x𝑖 , 𝜔, 𝜔𝑘 ) = 𝜙 (x𝑖 , 𝜔𝑘 ) +max(𝜙 (x𝑖 , 𝜔𝑘 ) − 𝜙 (x𝑖 , 𝜔), 0) . (17)

Here 𝛾 is a hyperparameter and 𝜙 (x𝑖 , 𝜔) indicates the uncertainty
of training sample x𝑖 under the model 𝜔 . Generally, if the local
model 𝜔𝑘 on client 𝑐𝑘 is less confident about a sample x𝑖 than
the global model 𝜔 , this sample will obtain a higher weight in the
objective function.

Inspired by the model-agnostic meta-learning (MAML) [19],
some meta learning-based methods in FGML [37, 68] rewrite the
loss function on each client 𝑐𝑘 as

𝐿𝑢
𝑘
=

𝑁𝑘∑︁
𝑖=1

𝑙𝑘 (𝜔 − 𝛼∇𝑙𝑘 (𝜔)), (18)

where 𝛼 is a hyperparameter. Although the meta learning-based
methods do not minimize the discrepancy between local models
and the global model, they find an initial global model which can
be easily adapted by clients after performing one or a few extra
local updates.
FL Aggregation Reweighting. Apart from the loss function de-
signing, reweighting local models during FL aggregation is also a
solution to deal with non-IID data. FedGCN [25] tries to reweight
local model parameters via an attention mechanism. Considering
an 𝐿-layer model 𝑓𝜔 , FedGCN assigns adaptive weights {𝛽𝑡,𝑙

𝑘
}𝐿
𝑙=1

to the model parameter 𝜔𝑘 from each client 𝑐𝑘 in round 𝑡 for FL
aggregation

𝜔𝑡+1,𝑙 =
𝑀∑︁
𝑘=1

𝛽
𝑡,𝑙

𝑘
𝜔
𝑡,𝑙

𝑘
(19)
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for 𝑙 = 1, 2, · · · , 𝐿. 𝛽𝑡,𝑙
𝑘

can be calculated through a softmax opera-
tion of score function 𝛼

𝑡,𝑙

𝑘

𝛼
𝑡,𝑙

𝑘
= Attn(𝜔𝑡,𝑙

𝑘
, 𝜔𝑡,𝑙 ) = p𝑙

𝑘
[𝜔𝑡,𝑙

𝑘
;𝜔𝑡,𝑙 ], (20)

where Attn(·) is the attention mechanism, [·; ·] indicates a concat
operation, and p𝑙

𝑘
is a trainable vector. As a result, {𝛽𝑡,𝑙

𝑘
}𝐿
𝑙=1 can

dynamically measure the closeness between each local model 𝜔𝑘

and the global model 𝜔 .
Model Interpolation. The model interpolation technique devel-
oped based on parameter weighted average of the global and the
local models. Specifically, themodel𝜔𝑡

𝑘
on client 𝑐𝑘 is a combination

of its local model 𝜔𝑡−1
𝑘

and the global model 𝜔𝑡 [90]

𝜔𝑡
𝑘
= 𝛼𝑘𝜔

𝑡−1
𝑘
+ (1 − 𝛼𝑘 )𝜔𝑡 , (21)

where 𝛼𝑘 is a mixing weight calculated as Jensen–Shannon diver-
gence [38] between local and global data distributions.

3.3.2 Personalized Model-Based Methods. Unlike training a single
global graph machine learning model, the goal of learning personal-
ized models is to train personalized graph machine learning models
for each client. The resulting personalized models are tailored for
specific clients and thus result in good performance. Formally, the
objective function for training personalized graphmachine learning
models can be rewritten as

min
𝜔1,𝜔2,· · · ,𝜔𝑀

𝑀∑︁
𝑘=1

𝑁𝑘

𝑁
𝐿𝑘 (𝜔𝑘 ) . (22)

One common strategy for training personalized graph machine
learning models is client clustering [21, 60, 82]. The intuition of
client clustering is that the clients with similar data distribution can
be clustered in a group and the clients in a group share the same
model parameters. The basic idea of client clustering in FGML is to
dynamically assign clients to multiple clusters based on their latest
gradients of graph machine learning models [73, 84]. One problem
here is that the clustering result is significantly influenced by the
latest gradients from clients, which are usually unstable during
local training [73]. GCFL+ solves this problem by taking series of
gradient norms into account for client clustering.

4 STRUCTURED FL
In the real world, a client may have connections with others, such
as road paths existing among traffic sensors. These connections usu-
ally contain rich information (e.g., the similarity of data distribution)
among clients. Considering these connections, the clients can form a
client graph. Structured FL takes the client graph GC = {VC, EC}
into account and enables a client to obtain information from its
neighbors. The key techniques in structured FL can be categorized
as centralized aggregation and fully decentralized transmission.
Fig. 3 illustrates the taxonomy of techniques in structured FL.

4.1 Centralized Aggregation
In structured FL with the central server, there exists structural
information among clients. It is natural for the server to consider
the structural information while updating parameters for each
client. Generally, the server first collects parameters from clients as
it does in standard FL. Then it updates parameters for each client

(a) Structured FL

(c) Fully decentralized transmission(b) Centralized aggregation

Figure 3: The taxonomy of techniques in structured FL. The
techniques in (a) structured FL can be categorized as (b) cen-
tralized aggregation and (c) fully decentralized transmission.

through a graph machine learning model based on the client graph
GC and finally sends the updated parameters back to clients.
Transmitting Model Parameters. Transmitting local model pa-
rameters to the central server as the input of graphmachine learning
models is a straightforward strategy. For instance, the central server
in SFL [9] collects local model parameters {𝜔𝑡

𝑘
}𝑀
𝑘=1 from clients in

round 𝑡 and employs a GCN [32] to compute a graph-based local
model parameters {𝜙𝑡+1

𝑘
}𝑀
𝑘=1 by

{𝜙𝑡+1
𝑘
}𝑀
𝑘=1 ← GCN(AC, {𝜔𝑡

𝑘
}𝑀
𝑘=1), (23)

where AC is the adjacency matrix of GC and GCN(·) represents
the operations in GCN. The global model parameters 𝜔𝑡+1 are
calculated by a readout(·) operation

𝜔𝑡+1 = readout({𝜙𝑡+1
𝑘
}𝑀
𝑘=1) . (24)

Each client 𝑐𝑘 updates local mode parameters in round 𝑡 by mini-
mizing the local loss

min 𝑙𝑘 (𝜔𝑘 ) + 𝜆[𝑅(𝜔𝑡
𝑘
, 𝜔𝑡 ) + 𝑅(𝜔𝑡

𝑘
, 𝜙𝑡

𝑘
)], (25)

where 𝑅(·) is a regularization term.
Similarly, the server in BiG-Fed [75] collects local model parame-

ters {𝜔𝑡
𝑘
}𝑀
𝑘=1 as client representatives and computes a global client

embedding H through a graph machine learning model based on
{𝜔𝑡

𝑘
}𝑀
𝑘=1 and the client graph. Inspired by contrastive learning [13],

Big-Fed optimizes the model by

min
1
𝑛

𝑀∑︁
𝑘=1

∑︁
𝑐𝑠 ∈𝑁 (𝑐𝑘 )

1 − cos(H𝑘 ,H𝑠 )

+ 1
𝑛

𝑀∑︁
𝑘=1

E𝑐𝑠∼𝑃𝑘 max(0, cos(H𝑘 ,H𝑠 )),

(26)

where H𝑘 is the global embedding of client 𝑐𝑘 and 𝑃𝑘 is a client
sampling strategy. By minimizing the objective function in Eq. (26),
each client will obtain a local model closer to its neighbors.
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Transmitting Embeddings. Instead of gathering model parame-
ters, another strategy for the server is to collect local embeddings
from each client and compute global embeddings through graph
machine learning models. For instance, CNFGNN [51] assumes that
each client 𝑐𝑘 represents a sensor with time series data x𝑘 . A client
𝑐𝑘 first computes a temporal embedding h𝑘 by a local encoder
(e.g., GRU [15]) which models local temporal dynamics. The cen-
tral server collects temporal embeddings {h𝑘 }𝑀𝑘=1 from clients and
employs a graph machine learning model to compute the spatial
embeddings {hG

𝑘
}𝑀
𝑘=1 of clients based on their temporal embed-

dings and client graph GC . As a result, hG
𝑘

integrates information
from client 𝑐𝑘 ’s neighbors and spatial dynamics. hG

𝑘
is finally sent

back to client 𝑐𝑘 as the input of a local decoder to make prediction.

4.2 Fully Decentralized Transmission
In the federated setting, one crucial bottleneck lies in high commu-
nication cost on the central server [24]. A feasible solution to tackle
this issue is to train a model in a fully decentralized fashion. Since
the clients in structured FL form a client graph GC = {VC, EC},
each client 𝑐𝑘 ∈ VC can transmit parameters with its neighbors
𝑁 (𝑐𝑘 ). Specifically, when a client 𝑐𝑘 receives model parameters
{𝜔𝑡

𝑠 |𝑐𝑠 ∈ 𝑁 (𝑐𝑘 )} from its neighbors 𝑁 (𝑐𝑘 ) [33, 54, 57], it performs
GNN aggregation to update its local model parameters 𝜔𝑡+1

𝑘
by

𝜔𝑡+1
𝑘

= AGG({𝜔𝑡
𝑠 |𝑐𝑠 ∈ 𝑁 (𝑐𝑘 )}), (27)

where AGG(·) is the aggregation function. An intuitive method
[54, 57] following this strategy is to let each client 𝑐𝑘 directly sum
up the model parameters from its neighboring clients

𝜔𝑡+1
𝑘

=
∑︁

𝑐𝑠 ∈𝑁 (𝑐𝑘 )
AC
𝑘𝑠
· 𝜔𝑡

𝑠 . (28)

However, this method results in losing local information of each
client since the updated model is fully determined by neighboring
information. This issue can be mitigated by involving local infor-
mation during aggregation [3, 17, 24, 45, 74, 79]. For example, the
authors of [45, 46] directly add local gradients during aggregation.
Formally, the operation can be written as

𝜔𝑡+1
𝑘

=
∑︁

𝑐𝑠 ∈𝑁 (𝑐𝑘 )
AC
𝑘𝑠
· 𝜔𝑡

𝑠 − 𝛼∇𝐿𝑘 (𝜔𝑡
𝑘
). (29)

Some methods [74] choose to retain local model parameters. For-
mally, these methods can be written as

𝜔𝑡+1
𝑘

= AC
𝑘𝑘
· 𝜔𝑡

𝑘
+

∑︁
𝑐𝑠 ∈𝑁 (𝑐𝑘 )

AC
𝑘𝑠
· 𝜔𝑡

𝑠 − 𝛼∇𝐿𝑘 (𝜔𝑡
𝑘
) . (30)

5 APPLICATIONS
The number of applications of FGML is greatly increasing in various
domains such as transportation, computer vision, recommendation
systems, and healthcare. In this section, we elaborate some repre-
sentative applications of FGML.
Transportation. Traffic prediction plays an important role in ur-
ban computing since it benefits reducing traffic congestion and
improving transportation efficiency in smart cities [91]. The tar-
get of traffic prediction is to predict traffic speed or traffic flow
of regions or road segments based on historical data collected by

devices deployed in each region or road segment. Traffic data con-
taining spatial-temporal information can be naturally represented
as graphs and used as inputs of graph machine learning models
for traffic flow prediction [44, 83]. Moreover, other applications
of FGML in transportation systems, such as location representa-
tion [23, 72], routing planing [78, 80], and user mobility anomaly
detection [64], are also attracting increasing attention.
Computer Vision. The existing applications of FGML in com-
puter vision consist of image classification and object trajectory
prediction [5, 6, 27]. The intuition is to construct graphs which
incorporate semantic relationships among classes and objects on
each client and embed them via graph machine learning models.
For image classification, a graph is constructed on each client to
represent classes (or domains) and the connections among them;
then the clients jointly train a graph machine learning model to
learn class embeddings [5, 6]. For object trajectory prediction, the
idea is to construct a series of dynamic graphs from videos. Each
graph represents objects and their spatial relationships in a video
frame. In a federated setting (e.g., a distributed surveillance system),
a dynamic GNN is transmitted for collaborative training [27].
Recommendation Systems. The downstream task in graph-based
federated recommendation systems is to produce high-quality item
rating for each user. A graph machine learning model learns to pre-
dict unobserved item rating to a user by leveraging the embeddings
of users and items in a user’s local user-item subgraph with its
own item rating. Aside from transmitting model parameters, user
embeddings and item embeddings are also collected by the server,
which leads to information leakage of item rating becoming a pri-
mary concern in federated recommendation systems [43, 70, 71].
This privacy issue is mitigated via adding the embeddings of pseudo
interacted items and noise to gradients [43, 70].
Healthcare. Sensitive medical data such as medical images and dis-
ease symptoms usually exist in isolated hospitals and medical insti-
tutes. The applications of FGML in healthcare are targeted at disease
and hospitalization prediction based on medical images or health
records stored in different hospitals and institutes. One key feature
of healthcare applications is complex connections among medical
images or health records because of patient interactions. The com-
mon strategy of modeling the connections is to construct a graph
where each node represents an image or a medical record from a
patient [65]. In the federated setting, the existing methods deal with
cross-hospital links either by reconstructing cross-hospital links
[56] or by transmitting parameters with nearby hospitals [3, 45, 46].
Other Applications. Apart from the aforementioned applications,
FGML has manifold applications in other domains. A number of
related papers have explored applications of FGML to various prob-
lems, such as human activity recognition [59], packet routing [47],
drug discovery [48], and financial crime detection [63].

6 PROMISING FUTURE DIRECTIONS
In this section, we present some limitations in current studies and
provide promising directions for future advances.
Data Heterogeneity of Graph Structures. Unlike the original FL
where data distribution of features and labels are considered, the
non-IID characteristic of graph structures is also a key challenge.
Although a few papers analyze non-IID graph structures across
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clients [73], few of them address this issue completely. Despite some
popular approaches designed for mitigating the non-IID character-
istic in standard FL [21, 26, 62], the approaches in FGML should
take graph structures into account.
Secure Aggregation of Instance Embeddings. As mentioned in
Section 3, the central server may collect instance embeddings from
clients for instance alignment in FGML, especially in KGs and user-
item graphs. The existing studies [43, 70] applying LDP techniques
and pseudo instance sampling to alleviate privacy leakage can lead
to performance degradation. Thus, designing an effective yet secure
aggregation scheme in FGML is still an open problem.
Fairness in FGML. Fairness is an important topic in FL. Without
accessing the sensitive information (e.g., gender and race) in differ-
ent clients, FL models might show distinct bias against some groups
of data [18]. Furthermore, we want the model to have similar per-
formance in each client in some FL scenarios [16, 35]. Considering
structural information, FGML provides many non-trivial challenges
of fairness, e.g., how the structural information affects different fair-
ness metrics in the federated training process. Novel fairness-aware
FGML models are greatly expected.
Poisoning Attacks and Defenses in FGML. Recently, a few
studies about poisoning attacks and defenses have been proposed
[11, 76]. Apart from poisoning attacks on data features and model
parameters in standard FL, poisoning attacks on graph structures
can also affect collaborative training in FGML. Designing efficient
attacks on graph structures in FGML and defending against such
attacks could be a promising topic in security.

7 CONCLUSIONS
A large number of powerful graph machine learning models have
achieved remarkable success in different domains. However, graph
machine learning in a federated setting still faces a series of new
challenges and therefore attracts massive attention from both re-
searchers and practitioners. In this paper, we introduce the concepts
of two problem settings in FGML. Then we review the current tech-
niques under each setting in detail and introduce applications of
FGML from different domains in the real world. In the end, some
promising future directions are provided.
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