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Suppose there are N wind farms, each of which monitors wind power
generation time series at that wind farm. Given a time window with T
timestamps, X = (x1,%y, ", X¢, -+, x7) € RV*T is denoted as wind power
generations of all the wind farms for T timestamps. For the t th timestamp, we
denote x; = (x},x?2,---,xM)T € RV*1 as the wind power generation of all the
wind farms at timestamp t.

The wind power forecasting problem is to predict the future wind power
generations X7, at timestamp T + n

Xran = f(X) = f(xq, %0, x¢, 0, XT)
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Existing Methods

o Statistical methods

Historical average (HA)

ARMA & ARIMA - stationary-stechastic-proeess

o Neural networks

Temporal correlations: RNN, LSTM & Seq2Seq

Spatial correlations: CNN - grie-ike-data
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Spatial self-attention mechanism
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Spatial self-attention mechanism

- Query vector - Q € RN*%m

[ Concat ]
b : Self attention K& Key vector - K € RN*%m

[ Scaled Dot- Product Attention 11‘

Lmear Lmear Llnear g - Value vector -V € RNde
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Self attention
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Our Approach — Structure of STAN

Spatial self-attention mechanism

Each of these three vectors Q, K,V is linearly projected h times

respectively

Concat /

| [ 8 | | Qi = QW

[ Scaled Dot- Product Attention 11‘ Ki, — KWiK

w! =vwY

Llnear Llnear Lmear g i=12.-- h : :
é é We get h scaled dot-product attention functions
head; = Attention(Q;,K;,V;)

Concatenate and project
Self attention MultiHead(Q,K,V) = Concat(head,, head,, -+, head,)W©°
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Spatial self-attention mechanism

| head, T Linear projection
, , Il = xtw!
Generate Q, K,V
Qb1 | Qb2 ||k i1 | |gi2 (Vi |[VE2 Qi1||0)2 kit |Ki?|vit | )2 Iz_' N Qi,Ki,Vi
\/ \/ Multi-head
0 Ki Vi 0 Ki Vi 0L, KL, Vi - [i1,0i2], [KiL, K] [vit, vi?]
| head, = Attention(Q%t, Kb, Vb1)
I; +Attention(Q’'t, KL, VIt + ...
ﬁ MultiHead(Q%, K%, VY)
= Concat(head, head,, -, head,)W?°
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Spatial self-attention mechanism

Feed-forward network

FFN(x) = [ReLU(xW1H)]w?2

Fully connected feed-forward network - two linear transformations with a RelLU
activation between them.
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Spatial self-attention mechanism

o Residual connection

Conquer the degradation problem with deeper networks

s Layer normalizations

Restrict weights to a certain range

After multi-head attention - VNSRS NIl LT AN A D]

After feed-forward network - O; = LN[ATTN; + FFN(ATTN,)]|

09/20



Our Approach — Structure of STAN

XI'AN JIAOTONG UNIVERSITY

Spatial self-attention mechanism
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Temporal attention mechanism
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Temporal attention mechanism

We generate hidden states of the encoder
h’t — €0(0£UE ~+ ht—IWE)

The context vector is dynamically computed :
T

Ck = Z akjhj

j=1
The element of weight vector ay - ay; is computed by a softmax
operation of a score function

exp (Score(sk, hj))
ayj =
ZJT-=1 exp (scare (sk, hj))
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Temporal attention mechanism

The general score function is based on s, (the hidden state of the decoder) and
h; (the hidden state of the encoder)

Score(sk,hj) = s, W'h;
Combine ¢, and s, to generate an attentional hidden state

Sk = tanh([cy; sk ]W*)
Finally we get the prediction

/\l _ _ ~ S
Xrig = Yk = SgW
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Dataset

* Type: wind power generation

e Collected by: National Renewable Energy Laboratory (NREL)
* Number of wind farms: 1325

* Interval: 10 minutes

e Span: from 2004 to 2006

* N-step forecasting: 1, 2and 3

* Neighbors: 6 wind farms selected by pearson correlation coefficient (PCC)

https://www.nrel.gov/

14/20



Experiments

XI'AN JIAOTONG UNIVERSITY

Baseline Algorithms

e HA: Historical Average uses the average of previous observations as the
prediction.

* ARIMA: A variation of ARMA widely used methods for time series prediction.

* ANN: In this paper, we construct an ANN with a single hidden layer which
has 100 hidden units.

 GRU: In this paper, we construct two GRU models: GRUs with the input of
target win farm and GRUm with the input of all the wind farms.

 Seq2Seq: The encoder maps input to a fixed-length context vector and the
decoder generates output according to the context vector.

* Seq2SeqAttn: Seqg2Seq models with global attention mechanism.
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Two Degraded Versions of STAN

* STANsa: This variation of STAN consists of spatial self-attention mechanism
and Seq2Seq model. In other words, we remove the temporal attention
mechanism.

* STANta: We replace spatial self-attention mechanism with a simple fully
connected feed-forward network. The difference between STANta and

Seqg2SeqAttn is that the input of Seq2SeqAttn is only the target wind farm.

16/20



Experiments

Result - Accuracy Comparison

RMSE

NO. Method
1-step 2-step 3step
1 HA 54.54 72.32 91.74
2 ARIMA 35.77 67.03 97.91
3 ANN 31.58 61.15 96.38
4 GRUs 31.40 58.79 77.36
5 GRUmM 29.14 58.31 75.22
6 Seq2Seq 30.21 62.41 86.4
7 Seq2SegAttn 27.72 63.28 81.60

""""" s  STANa 288  s839 7423

9 STANTta 27.29 58.41 75.91
10 STAN 25.82 57.22 73.67
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Experiments

Result - Converging Speed Comparison
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Spatiotemporal Attention Networks (STAN)

Spatial self-attention mechanism

* Multi-head attention

» Extract spatial correlations among wind farms
Temporal attention mechanism

 Seq2Seq with attention mechanism

* Capture temporal dependencies

Baseline algorithms and degraded versions of STAN

e Seven baseline algorithms

 Two degradeed versions of STAN
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STAN and More

 Temporal self- attention mechanism

Capture sequential dependencies Following Transformer

e Graph neural network

Spatial correlations among different wind farms

* Physical model

Numerical weather prediction (NWP)
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Any Question?

Xingbo Fu
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