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Motivation & Background

Suppose there are 𝑁 wind farms, each of which monitors wind power
generation time series at that wind farm. Given a time window with 𝑇
timestamps, 𝑋 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , ⋯ , 𝑥𝑇 ∈ ℝ𝑁×𝑇 is denoted as wind power
generations of all the wind farms for 𝑇 timestamps. For the 𝑡 th timestamp, we
denote 𝑥𝑡 = 𝑥𝑡

1, 𝑥𝑡
2, ⋯ , 𝑥𝑡

𝑁 𝑇 ∈ ℝ𝑁×1 as the wind power generation of all the
wind farms at timestamp 𝑡.

The wind power forecasting problem is to predict the future wind power
generations ො𝑥𝑇+𝑛 at timestamp 𝑇 + 𝑛

ො𝑥𝑇+𝑛 = 𝑓 𝑋 = 𝑓 𝑥1, 𝑥2, ⋯ , 𝑥𝑡 , ⋯ , 𝑥𝑇
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Motivation & Background

Statistical methods

Historical average (HA)

ARMA & ARIMA - stationary stochastic process

Neural networks

Temporal correlations: RNN, LSTM & Seq2Seq

Spatial correlations: CNN - grid-like data

Existing Methods
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Our Approach – Structure of STAN

Spatial self-attention mechanism

• Extract spatial correlations among wind farms

Temporal attention mechanism

• Capture temporal dependencies
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Our Approach – Structure of STAN

Spatial self-attention mechanism

Multi-Head Attention

Input Vector

LinearLinear Linear

Add & Norm

Feed Forward 

Add & Norm

Input Vector

Output Vector

Output Vector
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Our Approach – Structure of STAN

Spatial self-attention mechanism

Self attention

Self attention Key vector - 𝐾 ∈ ℝ𝑁×𝑑𝑚

Query vector - 𝑄 ∈ ℝ𝑁×𝑑𝑚

Value vector - 𝑉 ∈ ℝ𝑁×𝑑𝑚

Scaled dot-product attention

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑚
𝑉

05/20



Our Approach – Structure of STAN

Spatial self-attention mechanism

Self attention

Each of these three vectors 𝑄,𝐾, 𝑉 is linearly projected ℎ times 
respectively

𝑄𝑖
′ = 𝑄𝑊𝑖

𝑄

𝐾𝑖
′ = 𝐾𝑊𝑖

𝐾

𝑊𝑖
′ = 𝑉𝑊𝑖

𝑉

𝑖 = 1,2,⋯ , ℎ
We get ℎ scaled dot-product attention functions

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑖
′, 𝐾𝑖

′, 𝑉𝑖
′

Concatenate and project
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,⋯ , ℎ𝑒𝑎𝑑ℎ 𝑊𝑂
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Our Approach – Structure of STAN

Spatial self-attention mechanism

𝑥𝑡
𝑖

𝐼𝑡
𝑖

𝐾𝑖𝑄𝑖 𝑉𝑖

𝑄𝑖,1 𝑄𝑖,2 𝐾𝑖,1 𝐾𝑖,2 𝑉𝑖,1 𝑉𝑖,2

𝑥𝑡
𝑗

𝐼𝑡
𝑗

𝐾𝑗𝑄𝑗 𝑉𝑗

𝑄𝑗,1 𝑄𝑗,2 𝐾𝑗,1 𝐾𝑗,2 𝑉𝑗,1 𝑉𝑗,2

ℎ𝑒𝑎𝑑1 Linear projection

𝐼𝑡
𝑖 = 𝑥𝑡

𝑖𝑊𝐼

Generate 𝑄,𝐾, 𝑉

𝐼𝑡
𝑖 → 𝑄𝑖, 𝐾𝑖, 𝑉𝑖

Multi-head

𝑄𝑖, 𝐾𝑖, 𝑉𝑖 → 𝑄𝑖,1, 𝑄𝑖,2 , 𝐾𝑖,1, 𝐾 𝑉𝑖,1, 𝑉𝑖,2

ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑖,1, 𝐾𝑖,1, 𝑉𝑖,1

+𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑗,1, 𝐾𝑗,1, 𝑉𝑗,1 + ⋯

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄𝑖, 𝐾𝑖, 𝑉𝑖

= 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,⋯ , ℎ𝑒𝑎𝑑ℎ 𝑊𝑂
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Our Approach – Structure of STAN

Spatial self-attention mechanism

Feed-forward network

𝐹𝐹𝑁 𝑥 = 𝑅𝑒𝐿𝑈 𝑥𝑊1 𝑊2

Fully connected feed-forward network - two linear transformations with a ReLU
activation between them.
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Our Approach – Structure of STAN

Spatial self-attention mechanism

Residual connection

𝐴𝑇𝑇𝑁𝑡 = 𝐿𝑁 𝐼𝑡 +𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉After multi-head attention   -

𝑂𝑡 = 𝐿𝑁 𝐴𝑇𝑇𝑁𝑡 + 𝐹𝐹𝑁 𝐴𝑇𝑇𝑁𝑡

Conquer the degradation problem with deeper networks

Restrict weights to a certain range

Layer normalizations

After feed-forward network -
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Our Approach – Structure of STAN

Spatial self-attention mechanism

𝑂𝑡 ∈ ℝ𝑁×𝑑𝑚 has the same dimensions as 𝐼𝑡

Multi-Head Attention

Input Vector

LinearLinear Linear

Add & Norm

Feed Forward 

Add & Norm

Input Vector

Output Vector

Output Vector

𝑁𝑋: the number of sublayers
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Our Approach – Structure of STAN

Temporal attention mechanism

ℎ0 ℎ𝑡−𝑇

𝑂𝑡−𝑇
𝑖

ℎ𝑡−1

𝑂𝑡−1
𝑖

⋯

ℎ𝑡

𝑂𝑡
𝑖

C 𝑠1

𝑥𝑡
𝑖

ǁ𝑠1

ො𝑥𝑡+1
𝑖

𝑠n

ො𝑥𝑡+𝑛−1
𝑖

ǁ𝑠n

ො𝑥𝑡+𝑛
𝑖

⋯

⋯ ⋯

⋯

𝑐1 𝑦1 𝑦2

𝑎11 𝑎1(𝑡−1) 𝑎1𝑡
Encoder

Decoder

11/20



Our Approach – Structure of STAN

Temporal attention mechanism

We generate hidden states of  the encoder 

ℎ𝑡 = 𝜑 𝑂𝑡
𝑖𝑈𝐸 + ℎ𝑡−1𝑊

𝐸

The context vector is dynamically computed : 

𝑐𝑘 =

𝑗=1

𝑇

𝑎𝑘𝑗ℎ𝑗

The element of weight vector 𝑎𝑘 - 𝑎𝑘𝑗 is computed by a softmax 

operation of  a score function

𝑎𝑘𝑗 =
𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝑠𝑘 , ℎ𝑗

σ𝑗=1
𝑇 𝑒𝑥𝑝 𝑠𝑐𝑜𝑟𝑒 𝑠𝑘 , ℎ𝑗
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Our Approach – Structure of STAN

Temporal attention mechanism

The general score function is based on 𝑠𝑘 (the hidden state of the decoder) and 
ℎ𝑗 (the hidden state of the encoder) 

𝑠𝑐𝑜𝑟𝑒 𝑠𝑘 , ℎ𝑗 = 𝑠𝑘
𝑇𝑊𝐼ℎ𝑗

Combine 𝑐𝑘 and 𝑠𝑘 to generate an attentional hidden state
ǁ𝑠𝑘 = 𝑡𝑎𝑛ℎ 𝑐𝑘; 𝑠𝑘 𝑊𝐶

Finally we get the prediction

ො𝑥𝑇+𝑘
𝑖 = 𝑦𝑘 = ǁ𝑠𝑘𝑊

𝑆
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Experiments

Dataset

• Type: wind power generation

• Collected by: National Renewable Energy Laboratory (NREL)

• Number of wind farms: 1325

• Interval: 10 minutes

• Span: from 2004 to 2006

• N-step forecasting: 1, 2 and 3

• Neighbors: 6 wind farms selected by pearson correlation coefficient (PCC)

https://www.nrel.gov/
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Experiments

Baseline Algorithms 

• HA: Historical Average uses the average of previous observations as the 

prediction.

• ARIMA: A variation of ARMA widely used methods for time series prediction.

• ANN: In this paper, we construct an ANN with a single hidden layer which 

has 100 hidden units.

• GRU: In this paper, we construct two GRU models: GRUs with the input of 

target win farm and GRUm with the input of all the wind farms.

• Seq2Seq: The encoder maps input to a fixed-length context vector and the 

decoder generates output according to the context vector.

• Seq2SeqAttn: Seq2Seq models with global attention mechanism.
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Experiments

Two Degraded Versions of STAN

• STANsa: This variation of STAN consists of spatial self-attention mechanism 

and Seq2Seq model. In other words, we remove the temporal attention 

mechanism.

• STANta: We replace spatial self-attention mechanism with a simple fully 

connected feed-forward network. The difference between STANta and 

Seq2SeqAttn is that the input of Seq2SeqAttn is only the target wind farm.
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Experiments

Result - Accuracy Comparison

NO. Method 

RMSE 

1-step 2-step 3step 

1 HA 54.54 72.32 91.74 

2 ARIMA 35.77 67.03 97.91 

3 ANN 31.58 61.15 96.38 

4 GRUs 31.40 58.79 77.36 

5 GRUm 29.14 58.31 75.22 

6 Seq2Seq 30.21 62.41 86.4 

7 Seq2SeqAttn 27.72 63.28 81.60 

8 STANsa 28.89 58.39 74.23 

9 STANta 27.29 58.41 75.91 

10 STAN 25.82 57.22 73.67 
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Experiments

Result - Converging Speed Comparison

0 5 10 15 20 25 30 35 40
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Epochs

R
M

S
E

 

 

ANN

GRUs

GRUm

Seq2Seq

Seq2SeqAttn

STANsa

STANta

STAN

18/20



Conclusion & Future Works

Spatiotemporal Attention Networks (STAN)

Spatial self-attention mechanism

• Multi-head attention

• Extract spatial correlations among wind farms

Temporal attention mechanism

• Seq2Seq with attention mechanism

• Capture temporal dependencies

Baseline algorithms and degraded versions of STAN

• Seven baseline algorithms

• Two degradeed versions of STAN
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Conclusion & Future Works

STAN and More

• Temporal self- attention mechanism

Capture sequential dependencies Following Transformer

• Graph neural network

Spatial correlations among different wind farms

• Physical model

Numerical weather prediction (NWP)
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Xingbo Fu

Xi’an Jiaotong University

Xi’an, China

xbfu1994@gmail.com
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