

Spatiotemporal Attention Networks for Wind Power Forecasting

Xingbo Fu^{1, *}, Feng Gao¹, Jiang Wu¹, Xinyu Wei², Fangwei Duan³ ¹System Engineering Institute, Xi'an Jiaotong University, Xi'an, China

²Department of Statistics, Rutgers University, New Brunswick, NJ, USA

³Electric Power Research Institute, State Grid Liaoning Electric Power Co. Ltd., Shenyang, China

Our Approach

Experiments

Conclusion & Future Works

Suppose there are N wind farms, each of which monitors wind power generation time series at that wind farm. Given a time window with T timestamps, $X = (x_1, x_2, \dots, x_t, \dots, x_T) \in \mathbb{R}^{N \times T}$ is denoted as wind power generations of all the wind farms for T timestamps. For the t th timestamp, we denote $x_t = (x_t^1, x_t^2, \dots, x_t^N)^T \in \mathbb{R}^{N \times 1}$ as the wind power generation of all the wind farms at timestamp t.

The wind power forecasting problem is to predict the future wind power generations \hat{x}_{T+n} at timestamp T + n

 $\hat{x}_{T+n} = f(X) = f(x_1, x_2, \cdots, x_t, \cdots, x_T)$

Existing Methods

Historical average (HA)

ARMA & ARIMA - stationary stochastic process

Temporal correlations: RNN, LSTM & Seq2Seq

Spatial correlations: CNN - grid-like data

Our Approach – Structure of STAN

05/20

Self attention

Each of these three vectors Q, K, V is linearly projected h times respectively

$$Q'_{i} = QW_{i}^{Q}$$
$$K'_{i} = KW_{i}^{K}$$
$$W'_{i} = VW_{i}^{V}$$

 $i = 1, 2, \dots, h$ We get h scaled dot-product attention functions $head_i = Attention(Q'_i, K'_i, V'_i)$ Concatenate and project

 $MultiHead(Q, K, V) = Concat(head_1, head_2, \cdots, head_h)W^0$

Feed-forward network

 $FFN(x) = [ReLU(xW^1)]W^2$

Fully connected feed-forward network - two linear transformations with a ReLU activation between them.

Residual connection

Conquer the degradation problem with deeper networks

Layer normalizations Restrict weights to a certain range

After multi-head attention -

$$ATTN_{t} = LN[I_{t} + MultiHead(Q, K, V)]$$

After feed-forward network -

 $O_t = LN[ATTN_t + FFN(ATTN_t)]$

 $O_t \in \mathbb{R}^{N \times d_m}$ has the same dimensions as I_t

Temporal attention mechanism

Decoder

Temporal attention mechanism

We generate hidden states of the encoder

$$h_t = \varphi \left(O_t^{\,\iota} U^E + h_{t-1} W^E \right)$$

The context vector is dynamically computed :

$$c_k = \sum_{j=1}^{r} a_{kj} h_j$$

The element of weight vector $a_k - a_{kj}$ is computed by a softmax operation of a score function

$$a_{kj} = \frac{exp\left(score(s_k, h_j)\right)}{\sum_{j=1}^{T} exp\left(score(s_k, h_j)\right)}$$

Temporal attention mechanism

The general score function is based on s_k (the hidden state of the decoder) and h_j (the hidden state of the encoder)

$$score(s_k, h_j) = s_k^T W^I h_j$$

Combine c_k and s_k to generate an attentional hidden state

$$\tilde{s}_k = tanh([c_k; s_k]W^C)$$

Finally we get the prediction

$$\hat{x}_{T+k}^i = y_k = \tilde{s}_k W^S$$

Dataset

- Type: wind power generation
- Collected by: National Renewable Energy Laboratory (NREL)
- Number of wind farms: 1325
- Interval: 10 minutes
- Span: from 2004 to 2006
- N-step forecasting: 1, 2 and 3
- Neighbors: 6 wind farms selected by pearson correlation coefficient (PCC)

https://www.nrel.gov/

Baseline Algorithms

- **HA:** Historical Average uses the average of previous observations as the prediction.
- **ARIMA:** A variation of ARMA widely used methods for time series prediction.
- **ANN:** In this paper, we construct an ANN with a single hidden layer which has 100 hidden units.
- **GRU:** In this paper, we construct two GRU models: GRUs with the input of target win farm and GRUm with the input of all the wind farms.
- **Seq2Seq:** The encoder maps input to a fixed-length context vector and the decoder generates output according to the context vector.
- **Seq2SeqAttn:** Seq2Seq models with global attention mechanism.

Two Degraded Versions of STAN

- **STANsa:** This variation of STAN consists of spatial self-attention mechanism and Seq2Seq model. In other words, we remove the temporal attention mechanism.
- **STANta:** We replace spatial self-attention mechanism with a simple fully connected feed-forward network. The difference between STANta and Seq2SeqAttn is that the input of Seq2SeqAttn is only the target wind farm.

Result - Accuracy Comparison

NO.	Method	RMSE		
		1-step	2-step	3step
1	НА	54.54	72.32	91.74
2	ARIMA	35.77	67.03	97.91
3	ANN	31.58	61.15	96.38
4	GRUs	31.40	58.79	77.36
5	GRUm	29.14	58.31	75.22
6	Seq2Seq	30.21	62.41	86.4
7	Seq2SeqAttn	27.72	63.28	81.60
8	STANsa	28.89	58.39	74.23
9	STANta	27.29	58.41	75.91
10	STAN	25.82	57.22	73.67

Result - Converging Speed Comparison

Spatiotemporal Attention Networks (STAN)

Spatial self-attention mechanism

- Multi-head attention
- Extract spatial correlations among wind farms

Temporal attention mechanism

- Seq2Seq with attention mechanism
- Capture temporal dependencies

Baseline algorithms and degraded versions of STAN

- Seven baseline algorithms
- Two degradeed versions of STAN

STAN and More

• Temporal self- attention mechanism

Capture sequential dependencies Following Transformer

• Graph neural network

Spatial correlations among different wind farms

• Physical model

Numerical weather prediction (NWP)

Any Question?

Paper Slides

Code

Xi'an Jiaotong University Xi'an, China

道大等

Xingbo Fu

xbfu1994@gmail.com

http://www.xbfu.top/