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Abstract—Electricity cost constitutes an important part of 

the total energy cost for some energy-intensive enterprises 

(EIEs). For such EIEs, an effective way to reduce the electricity 

cost is to integrate the renewable energy, such as wind power, 

into their energy systems. In this paper, the problem of optimal 

wind power capacity planning in EIEs with self-generation 

power plants (SGPP) is considered. A two-level method 

framework is proposed in which the optimal electricity cost is 

obtained at the low level while the wind capacity planning 

decision is updated at the high level. The procedure is then 

repeated till the optimal capacity is obtained. Especially, a 

robust optimization-based formulation is established to 

guarantee the robustness and nonanticipativity of the low-level 

subproblem. And, the approximated expectation of operation 

cost is obtained without using the detailed probability 

distribution information. Numerical testing is performed for a 

real system and the results suggest the method is effective. 

Keywords—Microgrid, wind power, capacity planning, 

robust optimization, nonanticipativity 

NOMENCLATURE 

A. Indices and Sets: 
t   Index of time period, 1,...t T . 
s   Index of scenarios, 1,2,...,s S . 
BS  Base scenarios set. 
SVS  Selected vertex scenarios set. 

B. Parameters: 

s  Weighting factor of scenario s. 
in
t  Electricity price at time t when enterprise 

purchases electricity from main grid ($/MWh). 
out
t  Electricity price at time t when enterprise sells 

electricity to main grid ($/MWh). 
  Length of each time period (h). 

,t tw w  Original upper and lower bounds of the 
available wind power at time t (MW).  

,t td d  Upper and lower bounds of the uncertain load 
demand of EIE at time t (MW). 

,t tg g  Allowable range of load/power injection of the 
microgrid from/to the main grid (MW). 

,p p  Upper and lower bounds of the power outputs of 
the SGPP (MW) 

  Ramp-rate of the SGPP power output (MW/h). 

C. Decision Variables and random variables: 

tp  Power output of the SGPP (thermal unit) (MW) 
max min,t tp p  Two ancillary variables related with bounds of 

power outputs of the SGPP (MW) 
plaw  Planning capacity of wind power (MW) 

th  Wind curtailment level at time t (MW) 

tw   Uncertain wind power output (MW) 
real
tw  Real accommodated wind power (MW) 

td   Uncertain load demand (MW) 

tg  Uncertain load (positive) /power injection 
(negative) of the enterprise’s microgrid from/to 
the main grid (MW) 

tD  Uncertain net load (MW) 

D. Functions: 

( )C   Fuel cost of thermal units ($) 

( )E   Expectation function  

I. INTRODUCTION 

Electricity cost constitutes an important part of the total 
production cost of energy-intensive enterprises (EIEs) [1],[2]. 
For such EIEs, an effective way to reduce the electricity cost 
is to integrate renewable energy such as wind and/or 
photovoltaic energy into the energy system. The EIE with 
self-generation power plant (SGPP) and wind power 
installations have a typical microgrid structure [3]-[5] with 
conventional/uncertain power generations and uncertain 
loads. The problem of optimal wind capacity planning in 
microgrid then arises naturally since the solution to this 
problem gives the optimal installation capacity to make full 
use of wind energy in microgrid ([6]-[13]). 

Consider an EIE with SGPP, for example, an iron and 
steel plant ([4], [5]). Since its large range of load fluctuation, 
this kind of enterprise microgrid usually has several features 
as follows:  (1) the microgrid of such EIE is usually grid-
connected and the power/electricity exchange with the main 
grid is allowed. However, the exchange must be limited in an 
interval because high punishment prices are set when the 
limitations are violated [4],[5] and we call this constraint the 
gateway power bound limits (GPBLs).  (2) Energy storage 
system cannot be used as the main equipment to reduce the 
large range of load fluctuation. (3) To encourage the 
enterprise to keep balance as well as possible in its electricity 
generation and consumption, the price of buying electricity 
from the main grid is usually higher than that of selling 
electricity to the main grid.  

For such EIEs, the integration of renewable energy can 
reduce the electricity cost and at the same time, increase the 
aggregated uncertainties. Thus, feasible and optimal capacity 
planning is quite important for such EIEs. Therefore, 
capacity planning problems for microgrid have attracted 
great attention recently. According to the structure of these 
methods, they can be divided into two categories: multi-level 
methods and one-level methods. 

In the multi-level methods (usually two-level) ([6]-[10]), 
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the optimal operation cost is obtained at the low level for the 
trial planning decision and the planning decision is updated 
at the high level to reduce the total cost. The process is then 
repeated till the stopping criterion is satisfied. In [6], the low 
level subproblem is solved by using CPLEX and the high 
level problem is solved by using particle swarm optimization 
(PSO). In [7], robust optimization is used to solve the low 
level subproblem and an optimality cut is also generated and 
added to the high level master problem. Similar 
decomposition based two-stage approaches are adopted in [8] 
to solve the transmission and energy storage expansion 
planning problem and in [9] to solve the optimal planning of 
combined cooling, heating, and power (CCHP) microgrid. In 
[10], a Benders’ decomposition based method is proposed to 
solve the wind power investment problem. 

In the one-level methods ([11]-[13]), the optimal 
planning decision and the optimal operation scheduling (for a 
finite number of scenarios) are obtained at the same time by 
solving a single level mathematical programming problem. 
In [11], a one-level method is used to solve the capacity 
expansion planning problem of energy storage system in 
remote microgrids. Markovitz (mean-variance) objective 
function is adopted in [12] in the one-level method 
framework to minimize risk in microgrid planning. 
Differential evolution method is used in [13] to solve the 
optimal planning of access location and access capacity of 
wind power plants. 

Calculation of optimal operation cost is one of the main 
difficulties in solving all kinds of planning problems. 
However, to the best of our knowledge, robustness and 
nonanticipativity are not fully considered in the related 
literature on planning problem in computing the operation 
cost. In [14] and [15], it is pointed out that without 
consideration of nonanticipativity of the dispatch decisions, 
the results obtained may be infeasible in real operation. 
Besides, the real operation cost is difficult to be evaluated 
accurately when the realization of uncertainty is unknown. 

Therefore, in this paper, the problem of wind power 
capacity planning is considered in an EIE with SGPP. Main 
contributions of the paper are summarized as follows.  

(1) A formulation of wind capacity planning in a grid-
connected microgrid is established considering the real 
operation cost with GPBLs.  

(2) An approximated expectation of the operation cost is 
obtained without using the detailed probability distribution 
information of the uncertainties.  

The rest of the paper is organized as follows. The 
formulation of wind capacity planning problem is proposed 
in Section II. A robust optimization-based formulation for 
obtaining the optimal operation cost under a trial planning 
capacity is established in Section III. The approximation 
method for calculating the expectation of operation cost is 
given in Section IV. Numerical testing is analyzed in Section 
V and the paper is concluded in Section VI. 

II. WIND POWER CAPACITY PLANNING METHOD 

A.  Wind Power Capacity Planning: Framework 

To solve the problem of optimal wind power capacity 
planning problem, a two-level method framework is 
proposed in this section. The flow diagram is shown in Fig.1.  

In the two-level method framework, the optimal 
operation cost is obtained at the low level for the trial 

planning decision and the planning decision is updated at the 
high level to reduce the total cost. 
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Fig. 1 Wind power capacity planning flow diagram  

B. Capacity planning model  

Operation cost 
ED
tJ  is obtained at the low level and used 

in the high level. The capacity planning model is then 
formulated as follows: 
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s.t. 0 max{ }pla
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The objective (1) consists of investment and operation 
cost [6]-[10] (in one year). 

w
coC is the construction cost of 

unit capacity, and total investment return periods 
are N T periods. For example, if investment needs to be 
recovered in 10 years ( 10 8760h ), then 8760/T  , 

10N  .
w
omC  is the operation and maintenance cost of unit 

capacity, and 
w
suC  is the subsidy from the government for 

unit wind installation capacity. It is required by (2) that the 
planned capacity is no more than the original upper bound 
of available wind power and this is also the constraint to 
avoid unnecessary and idle installed capacity. 

Since the realization of uncertain wind power and load is 
unknown, the accurate operation cost cannot be obtained. 
Therefore, the expectation of operation cost is used to 
evaluate the operation cost. In the following sections, firstly, 
the calculation of optimal operation cost is proposed, which 
is a function of the realization of uncertainty (wind power 
and load); Secondly, the approximation method for 
obtaining the expectation of the operation cost is given. 

III. CALCULATION OF OPTIMAL OPERATION COST 

A. Optimal Operation Cost Calculation: Framework 

A robust optimization-based scheduling formulation and 
an economic dispatch (ED) model are established to obtain 
the optimal operation cost in this section. The framework of 
the solution procedure is shown in Fig.2. 

Step 1. Obtain the allowable range of power outputs of SGPP 

in each time period by solving a scheduling problem

Step 2. Obtain the optimal operation cost in each time period 

by solving an economic dispatch problem
 

Fig. 2. Framework for obtaining the optimal operation cost 



B. Formulation of  Scheduling Problem 

Suppose the trial planning capacity is w
pla

 then the 
formulation of the scheduling problem is given as follows.  
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s.t. , ; ; ,s s real s s

t t t tp w g d t s BS SVS          (4)

 ; ; ,s

t t tg g g t s BS SVS      (5) 

 ; ; ,s

tp p p t s BS SVS      (6) 

 min max ; ; ,s

t t tp p p t s BS SVS      (7) 

 min max

1| | ;t tp p t      (8) 

 max min

1| | ;t tp p t      (9) 

  , min , ; ; ,s real pla s
t t tw w h w t s BS SVS            (10)

 0 ;pla

th w t       (11) 

In the objective function (3), the weighted sum of 
operating costs is minimized. The first, second, and third 
term in (3) correspond to the generation cost of SGPP, the 
cost of buying electricity from the main grid, and the 
income of selling electricity to the main grid respectively.  

In (3)-(11), two kinds of selected scenarios are included: 
the base scenario (BS) and the selected vertex scenarios 
(SVS). The BS is included to guarantee the economic 
performance of the solution, which corresponds to the (point) 
forecasts of load demand and wind power output as defined 
below. 

 ( ), ( );s s

t t t td E d w E w for s BS        (12) 

The SVS are included to guarantee the robustness and 
nonanticipativity of the solution. The proof is omitted due to 
the length limit. Similar proof can be found in [15]. Two 
scenarios are included in the SVS set and they are defined as 
follows.  
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According to (13), SVS1 is, in fact, the scenario with the 
minimum net load demand and SVS2 is the one with the 
maximum net load demand.  

(4) is the power balance equation. (5)-(6) are the GPBLs 
and the power output bound limits of SGPP. (7)-(9) are the 
proposed nonanticipative constraints (NCs) which are 
closely related with ramp-rate of the SGPP power output. 

max min,t tp p represent the maximum and minimum allowable 

power outputs of SGPP at t period respectively. (10)-(11) 
correspond to the wind accommodation/curtailment decision 
under the trial planning capacity. The essence of ht is the 
difference between the planning capacity and the upper 
bound of the optimal accommodation interval at t period. 

The optimal feasible range of SGPP outputs ( *max *min,t tp p ) 

and the optimal wind curtailment level ( *

th ) are obtained by 

solving the scheduling problem, which are substituted into 
the dispatch problem as known values. 

C. Economic Dispatch (ED) Model 

For convenience, the net load demand
real

t t tD d w   is 

introduced (
*min{ , }real pla

t t tw w h w  ) and the economic 

dispatch problem at time period t is defined as follows.  

,
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t t tg g g    (16) 

 *min *max

t t tp p p    (17) 

Similar to (3), the objective function (14) includes fuel 
cost and the electricity transaction (purchase/sell) cost with 
the main grid at time period t. (15)-(16) are the power 
balance equation and the GPBLs respectively. (17) is the 
allowable range of power outputs of the SGPP which is very 
important in guaranteeing the nonanticipativity and 
robustness of the solution. 

Only one thermal unit is considered in (3)-(11) for two 

reasons. First, there are several identical thermal units in the 

background EIE considered in this paper and they can be 

easily aggregated as one unit. Second, the method proposed 

in this paper can be generalized to the case with several 

different units.  

IV. APPROXIMATION EXPECTATION OF OPERATION COST 

The optimal objective value of the dispatch problem is a 
function with respect to the uncertain net load Dt. The 

accurate expectation of ( )ED

t tJ D  depends on the detailed 

probability distribution information of Dt and it cannot be 
obtained in the planning process. Therefore, usually, Monte 
Carlo simulations are used to approximate the expectation of 
operation cost. However, at the same time, it means a heavy 
computing burden. In this section, an approximation method 
for calculating the expectation of the operation cost is given 
based on the convexity of the dispatch problem. 

A. Analysis on the Operation Cost Function 

For real systems, it holds that 
out in
t t  . Meanwhile, the 

cost function ( )tC p of the SGPP can be well formulated by 

convex function. Then, it is found that (14)-(17) is a convex 
programming problem and this result is stated as the 
following proposition.  

Proposition 1. If 
out in
t t  and ( )tC p is convex, then: 

(i) The gateway electricity cost max{ ,0}in
t tg   

min{ ,0}out
t tg  is a convex function of gt.  

(ii) The objective function in (14) is convex with respect 
to pt and gt.  

The conclusions of the proposition are easy to be 
obtained and the proof is omitted due to the length limit. 

Based on Proposition 1, we now prove that the optimal 

dispatch cost ( )ED
t tJ D  is a convex function with respect to 

Dt. For simplicity of presentation, (14)-(17) is rewritten as 

follows. 
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Proposition 2. Suppose ( , )F x y  is a convex function of x 

and y then ( )f D is a convex function when 

[ , ]D x y x y   .  

Proof. It is clear that (18) has feasible solution if and only 
if [ , ]D x y x y   . Suppose D1 and D2 [ , ]x y x y   and 



the corresponding optimal solutions of (18) are denoted as 
* *
1 1( , )x y  and * *

2 2( , )x y  respectively. That is, 

 * *
1 1 1( ) ( , )f D F x y  , * *

2 2 2( ) ( , )f D F x y .  (19) 

We then have 

 * * * *
1 2 1 2 1 2(1 ) (1 ) (1 )x x y y D D               (20) 

This suggests that * * * *
1 2 1 2(1 ) , (1 )x x x y y y          

give a feasible solution for 1 2(1 )D D D     and 

therefore the objective value is no less than the optimal 

objective, that is 
* * * *

1 2 1 2 1 2( (1 ) ) ( (1 ) , (1 ) )f D D F x x y y             
* * * *
1 1 2 2( , ) (1 ) ( , )F x y F x y     

              1 2( ) (1 ) ( )f D f D      

1 2( ) (1 ) ( )f D f D        (21) 

The proof is thus completed according to the definition of 

the convex function.       Q.E.D 

Then, according to the proposition 2, the conclusion that 

( )ED
t tJ D is a convex function with respect to Dt is obtained.  

B. Approximation Method of Operation Cost Expectation 

According to the above conclusion, the sketch of the 

optimal dispatch cost ( )ED
t tJ D is shown in Fig. 3. Then, a 

simple upper bound of ( )ED
t tJ D can be obtained as the red 

line segment in Fig.3 which links the two endpoints of the 

curve of ( )ED
t tJ D  in *max*min[g , ]t t t tp g p  . A simple lower 

bound can be obtained as the blue line segment in Fig.3 
which is parallel to the red line and lies under the curve of 

( )ED
t tJ D . The approximation of ( )ED

t tJ D  is then set as the 

dashed line (the mean of the upper and lower bounds).  
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Fig. 3 Approximation of the optimal dispatch cost 

Suppose the expression of the dashed line is t t ta D b (at, 

bt can be easily obtained) then we have: 

 ( ( )) ( ) ( )ED

t t t t t t t tE J D E a D b a E D b      (22) 

 (22) means that an approximation of the expectation of 

( )ED
t tJ D can be obtained based on E(Dt). It is found in 

numerical testing that the approximation error is satisfactory 
and, in this way, a good enough approximation of the 
dispatch cost is obtained without using the detailed 
probability distribution information of Dt. 

Thus, the ( )ED

tE J  in (1) is obtained approximately and 

(1)-(2) can be solved very efficiently.  

V. NUMERICAL TESTING 

Numerical testing results for an EIE are analyzed in this 
section. All tests are implemented using Matlab R2014a and 
Gurobi 7.5.2 at Intel(R) Core(TM) i7-4790 CPU @ 
3.60GHz PC with 8GB RAM.  

A. Basic Information 

There are 4 identical thermal units in the SGPP of the 

EIE with a total installed capacity of 1400MW. The four 
identical units are aggregated as one unit and basic 
information of the aggregated unit is shown in Table I. Load 
demands and original available wind power (and the 
upper/lower bounds) of a typical day (96 periods, 15min per 
period) are shown in Fig.4 and Fig.5 respectively, which are 
used in section IV.B for solving the scheduling problem. 
Large fluctuation of load demands is an important feature of 
the EIE microgrid as shown in Fig.4. One year data (35040 
periods) is used in section IV.C and IV.D for solving the 
planning problem. 

TABLE I  

BASIC INFORMATION OF THE THERMAL UNIT 

p (MW) p  (MW)  (MW/h) ($ /( ))MW h  * ($) * 

1400 640 400 19.74 3979 

*: ( )C p p    

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

850

900

950

1000

1050

 

 

 Load Interval

 Load Expectation

P
o

w
e

r 
(M

W
)

Time Period  
Fig. 4 Basic information of load demands 
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 Fig. 5 Basic information of wind outputs  

B. The Accuracy of Expectation Approximation Method 

The approximation error of (22) is tested and analyzed in 
this subsection. The true expectation of the operation cost in 
one day is estimated by using Monte Carlo simulations 
(1000 samples) and the simulation data is generated 
randomly in the wind interval of Fig.5, including three 
distributions. All results are shown in Table II. 

TABLE II  

COMPARISON OF DIFFERENT COST 

Cost-type 
M-Cost 

( 510 $ ) 

M-Error 

(%) 

O-Cost 

( 510 $ ) 

O-Error 

(%) 

Approximation 5.1376 / 5.3162 / 

Normal 5.0681 1.35 5.2617 1.02 

Uniform 5.1049 0.64 5.3045 0.22 

Weibull 5.2162 1.53 5.4893 2.69 

In Table II, “M-” means that the planning capacity is 
150MW (maximum of original available wind power 
outputs in Fig.5). “O-” means that the planning capacity is 
20MW (one of the optimal capacity obtained in later tests). 
“Error” means the relative error between the expectation of 
optimal operation cost under each distribution and the 
approximated expectation cost. It is seen that the 
approximation error is very small which suggests that the 



method in section IV is effective.  

C. Effect of Wind Power Fluctuation on Planning Capacity 

In this subsection, the original upper and lower bounds of 
available wind power are modified to test the effects of wind 
power fluctuation on optimal planning capacity. This 
problem is important since the bounds are different for 

different locations of wind plant. N
tw ,

N
tw are the new upper 

and lower bounds and they are obtained based on the wind 
power fluctuation rate (WPFR) as shown in (23)-(24). Test 
results are shown in Fig. 6. 
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Fig. 6 Effect of the wind power fluctuation on the capacity planning result 

From Fig. 6, the following conclusions are obtained: 1) 
The planning capacity decreases with the increase of WPFR. 
The planning capacity becomes zero when the WPFR is 
30%, which shows that the installment of wind turbines is 
no longer an economic choice. 2) The total cost increases 
with the increase of WPFR. The results are useful in 
determining the installment positions of wind farms with 
different wind power outputs. 

D. Effect of Load Change on Planning Capacity 

In real operation, for EIEs, it is found that the 

lower/upper bounds of load demands vary with different 

production plan while the differences between the lower and 

upper bounds do not change significantly. Therefore, the 

effects of this kind of load change on optimal capacity 

planning are tested in this subsection. For this purpose, new 

bounds of load demand (
N

td ,
N
td ) are set based on the load 

change rate (LCR) as shown in (25).  Test results are shown 

in Fig. 7. 

 N
t t td d d LCR   ;  N

t t td d d LCR     (25) 
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Fig. 7 Effect of the load change on the capacity planning 

It is seen from Fig. 7 that the planning capacity is 
unchanged when LCR is between -20% and 0%, and then 
decreases with the increase of LCR. This is because the 

wind accommodation capacity is closely related to the ramp 
rate of SGPP. When LCR is small, the power output of 
SGPP is far away from its upper bound, p , and can be 

adjusted in a large interval. When LCR is large, the power 
output of SGPP is close to its upper bound, and can only be 
adjusted in a small interval. Therefore, the wind 
accommodation capacity decreases when LCR increases. 
Moreover, the total cost increases nearly linearly with LCR 
since the fuel cost of SGPP is assumed to be an affine 
function. 

VI. CONCLUSION 

A wind power capacity planning method in grid-
connected microgrid of EIE with GPBLs is presented in this 
paper. An approximation method for the expectation of 
operation cost is proposed to reduce the computing burden 
without using the detailed probability distribution 
information of the uncertainties. Numerical testing results 
for a real system suggest the method is effective.  
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