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Abstract—Wind power is one of the most important renewable 
energy sources and accurate wind power forecasting is very 
significant for reliable and economic power system operation and 
control strategies. This paper proposes a novel framework with 
spatiotemporal attention networks (STAN) for wind power 
forecasting. This model captures spatial correlations among wind 
farms and temporal dependencies of wind power time series. First 
of all, we employ a multi-head self-attention mechanism to extract 
spatial correlations among wind farms. Then, temporal 
dependencies are captured by the Sequence-to-Sequence 
(Seq2Seq) model with a global attention mechanism. Finally, 
experimental results demonstrate that our model achieves better 
performance than other baseline approaches. Our work provides 
useful insights to capture non-Euclidean spatial correlations.

Index Terms—Spatiotemporal attention networks, wind power 
forecasting, attention mechanism.

I. INTRODUCTION

Wind power is playing a very important role in the electric 
grid around the world. Due to its variability and stochastic 
nature, it is difficult to develop a model and predict wind power 
generation accurately [1]. We need not only to capture temporal 
dependencies for time series, but also to construct spatial 
correlations between the target wind farm and some other wind 
farms.

Wind power forecasting has drawn tremendous attentions 
from researchers. Some researchers used statistical methods for 
short-term wind power forecasting. The statistical models 
include historical average (HA) method and Auto-regressive 
moving average (ARMA) method [2]. ARMA is the most well-
known time-series based method for predicting the future 
values of wind power and researchers have attempted some 
variations of ARMA (such as ARIMA) to get better forecasting 
performance. However, these methods are constrained by the
assumption that the target time series is a stationary stochastic 
process [3]. Unfortunately, wind power generation does not 
match this assumption in the real world.

Neural networks have been applied widely for time series 
forecasting. Considering contextual information learning from 
time series, recurrent neural network (RNN) models can extract 
explicit temporal dependencies for sequence learning [4].

Moreover, long short-term memory (LSTM) [5] and gated 
recurrent unit (GRU) [6] are the two special variations of RNN. 
On the one hand, these approaches have succeeded in many 
areas including natural language processing (NLP) and time 
series forecasting. One the other hand, the disadvantage of 
using these approaches is that they do not adequately consider 
the spatial dependencies among wind farms.

In neural networks, convolutional neural network (CNN) 
models are used efficiently to model spatial dependencies for
image classification, visual recognition and traffic flow 
prediction [7]. Nevertheless, CNN specializes in processing 
data that has a grid-like topology, such as an image [8]. In other
words, CNN does not work well when we model the non-
Euclidean correlations among different wind farms.

Sequence-to-Sequence (Seq2Seq) is a neural network based 
on RNN and it has been extensively applied for neural machine 
translation [9]. The obvious disadvantage of fixed-length 
context vectors in Seq2Seq models is that it cannot remember 
the first part of input once it completes processing the whole 
input. To deal with the incapability of remembering long
sequence, attention mechanism was introduced to Seq2Seq 
models [10]. However, it is hard to parallel in that Seq2Seq 
models are based on recurrent structures.

Since Transformer was proposed, it has shown impactful 
capacity to capture temporal dependencies from a sequence by 
self-attention mechanism. [11] Moreover, Transformer can be 
paralleled without recurrent network units.

In order to predict wind power generation, we present a 
novel framework with spatiotemporal attention networks in this 
paper and the main contributions are as follows:

Considering correlations of wind farms, we construct 
spatial self-attention mechanism to capture the spatial 
dependencies among wind farms;

To capture time dependencies, temporal attention 
mechanism is employed with Seq2Seq model;

Experimental results are presented on real-world wind 
power datasets, which verify the outperformance of 
our model comparing with all baselines.

The research presented in this paper is supported in part by the State 
Grid Science and Technology Program of China.
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The rest of this paper is as follows. Firstly, we introduce 
notations and problem statement in Section II. Next, Section III 
presents our spatiotemporal attention network for wind power 
forecasting. In Section IV, we report experimental results of our 
model in comparison with state-of-the-art baselines. After 
summarizing related research backgrounds in Section V, we 
give the conclusions in Section VI. 

II. PRELIMINARIES

A. Notations
Suppose there are ܰ wind farms, each of which monitors 

wind power generation time series at that wind farm. Given a 
time window with ܶ timestamps, ܺ = ,ଵݔ) ,ଶݔ ⋯ , ,௧ݔ ⋯ , (்ݔ ∈ℝே×் is denoted as wind power generations of all the wind 
farms for ܶ timestamps. For the ݐ th timestamps, we denoteݔ௧ = ,௧ଵݔ) ,௧ଶݔ ⋯ , ்(௧ேݔ ∈ ℝே×ଵ as the wind power generation 
of all the wind farms at timestamp ݐ.

B. Problem Statement
The wind power forecasting problem is to predict the future

wind power generations at timestamp  ܶ + ݊, which is also a ݊ –step ahead prediction. Mathematically, the ݊ –step ahead 
wind power generation ො்ା௡ݔ can be predicted byݔො்ା௡ = ݂(ܺ) = ,ଵݔ)݂ ,ଶݔ ⋯ , ,௧ݔ ⋯ , (்ݔ (1)

III. SPATIOTEMPORAL ATTENTION NETWORKS

In this section, we introduce the structure of spatiotemporal 
attention networks (STAN). Fig. 1 illustrates the architecture of 
our proposed model.

Fig. 1 Architecture of STAN. STAN model consists of spatial self-attention 
mechanism (blue box) and temporal attention mechanism (red box).

A. Spatial self-attention mechanism
Following Transformer [11], a spatial self-attention 

mechanism employed in this model is used to extract spatial 
correlations among wind farms. The input of this module is the 
input vector ௧ܫ encoded by a simple fully connected feed-
forward network from the wind power generation of all the 
wind farms at timestamp ܫ.ݐ௧ = ௧ܹூݔ (2)

where ܹூ ∈ ℝଵ×ௗ೘ is the learnable weight matrix and ݀௠ is 
the dimension of this model.

Once getting input vector, it is processed by a multi-head 
attention and a fully connected feed-forward network.

1) Multi-Head Attention
The structure of multi-head attention is shown as Fig. 2.

Fig. 2 Architecture of Multi-Head Attention.
Multi-head attention contains a query vector ܳ ∈ ℝே×ௗ೘ , a

key vector ܭ ∈ ℝே×ௗ೘ and a value vector ܸ ∈ ℝே×ௗ೘ , all of 
which are the input vector ܫ௧ ∈ ℝே×ௗ೘ at timestamp ݐ. From 
these three vectors, we compute scaled dot-product attention
[11] function to get the output as follows:݁ݐݐܣℎ݊݋݅ݐ(ܳ, ,ܭ ܸ) = softmax ቆ்ܳܭඥ݀௠ቇ ܸ (3)

As (3) shows, the output is a weight sum of the values and 
the weight assigned to each value is calculated by the dot-
product of the query with all keys. This scaled dot-product 
attention function is different from Luong attention mechanism
because of the introduction of a scaling factor ଵඥௗ೘. When the 
dimension ݀௠ is a large value, the dot product significantly 
fluctuates. To offset this effect, the dot product is scaled by the 
scaling factor ଵඥௗ೘.

As for "multi-head", each of these three vectors ܳ, ,ܭ ܸ is 
linearly projected ℎ times respectively as follows:

௜ܳᇱ = ܳ ௜ܹொ, ݅ = 1,2, ⋯ , ℎ ௜ᇱܭ(4) = ܭ ௜ܹ௄, ݅ = 1,2, ⋯ , ℎ (5)

௜ܹᇱ = ܸ ௜ܹ௏, ݅ = 1,2, ⋯ , ℎ (6)

where ௜ܹொ ∈ ℝௗ೘×ௗೖ , ௜ܹ௄ ∈ ℝௗ೘×ௗೖ and ௜ܹ௏ ∈ ℝௗ೘×ௗೖ are 
the learnable weight matrices and ݀௞ = ݀௠/ℎ.
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Therefore, each attention function is computed as follows:ℎ݁ܽ݀௜ = )݊݋݅ݐℎ݁ݐݐܣ ௜ܳᇱ, ,௜ᇱܭ ௜ܸᇱ) (7)

These attention function are concatenated and projected 
resulting in the output of multi-head attention as follows:݀ܽ݁ܪ݅ݐ݈ݑܯ(ܳ, ,ܭ ܸ)= ,ℎ݁ܽ݀ଵ)ݐܽܿ݊݋ܥ ℎ݁ܽ݀ଶ, ⋯ , ℎ݁ܽ݀௛)ܹை (8)

where ܹை ∈ ℝௗ೘×ௗ೘ is the learnable weight matrix.

2) Feed-Forward Networks
After multi-head attention, we employ a fully connected 

feed-forward network. This network contains of two linear 
transformations with a ReLU activation between them.(ݔ)ܰܨܨ = ଶܹ[(ଵܹݔ)ܷܮܴ݁] (9)

where ܹଵ ∈ ℝௗ೘×ௗ೑೑೙ and  ܹଶ ∈ ℝௗ೑೑೙×ௗ೘ are the learnable 
weight matrices and ݀௙௙௡ is the size of the inner-layer.

3) Residual Connections and Layer Normalizations
We take the output vector as input vector and feed it back 

to multi-head attention. Repeating this processing ௑ܰ times, the 
model constructs a deep ݇-layer spatial self-attention.

To conquer the degradation problem with deeper networks 
[12], residual connections are employed after each multi-head 
attention and feed-forward network. Following residual 
connections, layer normalizations restrict weights to a certain 
range [13]. Residual connections and layer normalizations get 
the model to train effectively.

Residual connections and layer normalizations following 
multi-head attention can be written as follows:ܶܶܣ ௧ܰ = ௧ܫ]ܰܮ + ,ܳ)݀ܽ݁ܪ݅ݐ݈ݑܯ ,ܭ ܸ)] (10)

where ܰܮ is the layer normalization function.

Residual connections and layer normalizations following 
the feed-forward network can be written as follows:௧ܱ = ܶܶܣ]ܰܮ ௧ܰ + ܶܶܣ)ܰܨܨ ௧ܰ)] (11)

where ௧ܱ ∈ ℝே×ௗ೘ and ܰܮ is the layer normalization function.

Therefore, we obtain the output of spatial self-attention 
mechanism.

B. Temporal attention mechanism
Temporal attention mechanism in this model is a Seq2Seq 

model based on RNN with global attention mechanism [14].

The Seq2Seq model consists of an encoder and a decoder. 
The encoder’s input is ௧ܱ௜ ∈ ℝଵ×ௗ೘, the corresponding part to 
target wind farm of ௧ܱ from timestamp 1 to ܶ.

At timestamp ݐ , the hidden state ℎ௧ in the encoder is 
computed as follows:ℎ௧ = ߮൫ ௧ܱ௜ܷா + ℎ௧ିଵܹா൯ (12)

Where ܷா ∈ ℝௗ೘×ௗ೐ and ܹா ∈ ℝௗ೐×ௗ೐ are the learnable 
weight matrices in the encoder and ݀௘ is the dimension of this 
model. ߮ is a tanh activation. ℎ଴ is the zero state.

The context vector ܿ௜ captures relevant information from 
the encoder to predict the future values. The difference between 
Seq2Seq models and Seq2Seq models with attention 
mechanism is that the attention mechanism dynamically
computes the context vector for each timestamp. ܿ௞ is 
computed as the weighted average over all the hidden states of 
the encoder as follows:

ܿ௞ = ෍ ܽ௞௝ℎ௝்
௝ୀଵ (13)

where ܽ௞௝ is an element of weight vector ܽ௧ ∈ ℝଵ×் and ܽ௞௝ is 
computed as follows:

ܽ௞௝ = ݌ݔ݁ ቀ݁ݎ݋ܿݏ൫ݏ௞, ℎ௝൯ቁ∑ ݌ݔ݁ ቀ݁ݎ݋ܿݏ൫ݏ௞, ℎ௝൯ቁ௝்ୀଵ (14)

where ݏ௞ ∈ ℝௗ೏×ଵ is the hidden state of the decoder and ݀ௗ is 
the size of hidden cells in the decoder.

As (14) shows, ܽ௞௝ is a sofmax result of a score function. 
According to Luong attention mechanism [14], the score 
function has three different alternatives. In this paper, we 
implement the general score function as follows:݁ݎ݋ܿݏ൫ݏ௞, ℎ௝൯ = ௞்ݏ ܹூℎ௝ (15)

where ܹூ ∈ ℝௗ೏×ௗ೐ is the learnable weight matrix.

Given the hidden state ݏ௜ of the decoder and the context 
vector ܿ௜ , a simple concatenation is used to combine the 
information from both vectors to produce an attentional hidden 
state as follows: ௞ݏ̃ = ;ℎ([ܿ௞݊ܽݐ (௞]ܹ஼ݏ (16)

where[; ] is a concentration operation and ܹ஼ ∈ ℝ(ௗ೐ାௗ೏)×ௗ೏
is the learnable weight matrix.

At last, we employ a linear projection to make the output of 
decoder as follows: ௞ݕ = ௞ܹௌݏ̃ (17)

where ܹௌ ∈ ℝௗ೏×ଵ is the learnable weight matrix.

Finally, the prediction ݔො்ା௞௜ isݔො்ା௞௜ = ௞ݕ (18)

IV. EXPERIMENTS

Experiments are conducted on real-world datasets to 
evaluate the performance of our proposed spatiotemporal 
attention networks. In this section, we introduce the datasets 
and baseline algorithms used along with experimental setup and 
the evaluation. The code for our proposed model is available on 
https://github.com/xbfu/Spatiotemporal-Attention-Networks.

A. Datasets
We use the wind power generation dataset collected by 

National Renewable Energy Laboratory (NREL). This dataset 
records wind power generation of 1325 wind farms with a ten-
minute sampling rate from 2004 to 2006. We select 6 wind 
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farms among the dataset. Table I shows the locations of these 
six wind farms.

B. Experimental Settings
Loss Function: During the training, we use Adam 
optimizer [2014] to train the model by minimizing the 
mean squared error (MSE) between the prediction and 
the ground truth.

ܧܵܯ = 1ܰ ෍൫ݔ௧ା௡௜ − ො௧ା௡௜ݔ ൯ଶே
௜ୀଵ (19)

Evaluation Metrics: To measure the effectiveness of 
our proposed model and baseline algorithms, we use
the root mean square error (RMSE) as the evaluation 
metrics.

ܧܵܯܴ = ඩ1ܰ ෍൫ݔ௧ା௡௜ − ො௧ା௡௜ݔ ൯ଶே
௜ୀଵ (20)

Hyperparameters: The hyperparameters of our model 
are shown in Table II.

C. Baseline Algorithms
We compare our proposed model with the following

baseline algorithms.

HA: Historical Average uses the average of previous 
observations as the prediction.

ARIMA: A variation of ARMA and one of the most 
widely used methods for time series prediction.

Table I Locations of 6 Wind Farms
ID Latitude Longitude

SITE_00173 36.14 -100.34

SITE_00193 36.42 -100.44

SITE_00215 36.42 -100.67

SITE_00365 36.50 -100.68

SITE_00446 36.50 -100.28

SITE_00797 36.56 -100.54

Table II Hyperparameters

Parameters Values݀௠,  ݀ௗ, ݀௘ 512ܶ 12ℎ 8݀௙௙௡ 2048௑ܰ 6

Training Epochs 40

Learning Rate 0.01

ANN [16]: Artificial Neural Network is also widely 
applied in time series forecasting. In this paper, we 
construct an ANN with a single hidden layer which has 
100 hidden units.

GRU [6]: Gated recurrent units are a gating 
mechanism in recurrent neural networks. In this paper, 
we construct two GRU models: GRUs with the input 
of target win farm and GRUm with the input of all the 
wind farms.

Seq2Seq [9]: Seq2Seq models consist of an encoder 
and a Decoder. The encoder maps input to a fixed-
length context vector and the decoder generates output 
according to the context vector.

Seq2SeqAttn [10]: Seq2Seq models with global 
attention mechanism does not assume a monotonic 
alignment, which is different from Seq2Seq.

Furthermore, to fully evaluate the performance benefiting
from each component of our proposed approach, we implement 
two degraded versions of STAN.

STANsa: This variation of STAN consists of spatial 
self-attention mechanism and Seq2Seq model. In other
words, we remove the temporal attention mechanism.

STANta: We replace spatial self-attention mechanism 
with a simple fully connected feed-forward network.
The difference between STANta and Seq2SeqAttn is 
that the input of Seq2SeqAttn is only the target wind 
farm.

D. Experimental Results
The following experiments are performed to evaluate our 

proposed approach. This part contains two evaluations: 
accuracy comparison and converge speed comparison.

1) Accuracy Comparison
We conduct experiments on wind power generation datasets 

to compare the performance of our proposed model with its two 
variations and seven baseline algorithms. Table III shows 
accuracy comparisons for different steps among these ten
approaches. As suggested in Table III, the STAN outperforms 
seven baseline approaches.

Table III Accuracy Comparison of Different Models

NO. Method
RMSE

1-step 2-step 3step

1 HA 54.54 72.32 91.74

2 ARIMA 35.77 67.03 97.91

3 ANN 31.58 61.15 96.38

4 GRUs 31.40 58.79 77.36

5 GRUm 29.14 58.31 75.22

6 Seq2Seq 30.21 62.41 86.4

7 Seq2SeqAttn 27.72 63.28 81.60

8 STANsa 28.89 58.39 74.23

9 STANta 27.29 58.41 75.91

10 STAN 25.82 57.22 73.67
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Fig. 3 Converging Speed of Models

2) Converging Speed Comparison
During the training, rapidly convergence is important. This 

evaluation investigates the converging speeds for 1-step 
forecasting of different models. The result is shown in Fig. 3 
and it suggests that the STAN model converges faster than other 
baseline approaches.

V. RELATED WORK

A. Wind Power Forecasting
Wind power forecasting has two common approaches. The 

first is the physical model using parameterizations based on a
detailed physical description of the atmosphere around and 
insider the wind farm. Numeric Weather Prediction (NWP) is 
the most well-known method [17]. On the one hand, NWP is 
very reliable since it predicts wind speed by solving 
complicated mathematical models with weather data like 
temperature, surface roughness and obstacles. Then we can 
extrapolate wind power according to the relationship between 
wind speed and output. On the other hand, the temporal 
resolution is usually between 1 and 3 hours in NWP and 
sometimes we can only get 4-time predictions at specific nodes 
of a grid per day [2]. Therefore, NWP model is an ideal method 
for long-term wind power forecasting but not for short-term.

The second model is statistical approach based on historical 
data of power. Sub-classification of statistical is time-series 
based models and neural network based models. One of the 
time-series based models is ARMA with its variations ARIMA 
and ARIMAX (ARMA with exogenous input). These linear 
predictors with the assumption that time series is stationary 
stochastic process. Neural network based models, or artificial-
intelligence-based models construct the relationship between 
historical data and output. Neural networks contain fully 
connected network (FCN), stacked autoencoder (SAE) [18],
convolutional neural network (CNN), recurrent neural network
(RNN), etc.

The challenge of wind power forecasting is modeling spatial 
correlations and temporal correlations. Temporal correlations 

in wind power time series are obvious while spatial correlations 
are also indispensable.

B. Self-Attention Mechanism
Self-attention is an attention mechanism relating different 

positions of a sequence and captures correlations among each 
part of this sequence. Recently it has been widely applied in 
neural machine translation (NMT), abstractive summarization,
etc.

Transformer is one of the most impressive frameworks 
based on the self-attention mechanisms [11]. This work is 
totally different from the past sequence model such as RNN and 
Seq2Seq model.

In Transformer, "Scaled Dot-Product Attention" is firstly 
employed to capture correlations among each input of sequence
by attention function. Attention weights are calculated by the 
dot products of the query with all keys, divided by ඥ݀௞ (݀௞ is 
the dimension of queries and keys) and a softmax function on 
the values. 

The other pioneering structure of Transformer is the multi-
headed attention mechanism. Transformer projects the queries, 
keys and values ℎ times to get ℎ attention functions instead of 
performing a single attention function. Then these projected 
attention functions are concatenated leading to the final values.
This module makes it possible for attention mechanism to 
concentrate different parts of input.

In this paper, we leverage self-attention mechanism to 
capture spatial dependencies among different wind farms 
inspired by Transformer.

C. Seq2Seq with Attention
Based on the Seq2Seq model, Seq2Seq model with attention 

uses dynamic context vector which are computed according to 
all the output of the encoder. This attention mechanism can 
focus partially on input sequence to accurately remember and 
process long complex temporal dependencies.

The context vector, which is used to calculate the final 
output of Decoder, is calculated by the dot product of weight 
vector and the output of the encoder. As for weight vector, we
need to employ a softmax function on score function. Luong 
attention mechanism proposed three types of score function
[14]. In this paper, we use the general score function.

VI. CONCLUSION

In this paper, we propose a novel framework with 
spatiotemporal attention networks for wind power forecasting. 
This model contains a spatial self-attention mechanism used to 
extract spatial correlations among different wind farms along 
with a temporal attention mechanism to capture temporal 
dependencies. These two attention mechanism efficiently
model spatiotemporal problems with non-Euclidean
correlations. The experiment is conducted on real-world 
datasets and our proposed model delivers the best performance 
over seven baseline algorithms. In the future work, we will 
focus on intersections between graph convolutional networks
and attention mechanisms with their applications to 
spatiotemporal modeling.
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